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Figure 1. Our method yields superior and temporally consistent motion estimation. It can be observed that our method yield graph (green
curve) significantly closer to the ground truth acceleration graph (black curve) compared to existing methods [2, 38, 39] (result inferred on
unseen test video from Human3.6M dataset [11]).

Abstract

Recovering temporally consistent 3D human body pose,
shape and motion from a monocular video is a challenging
task due to (self-)occlusions, poor lighting conditions, com-
plex articulated body poses, depth ambiguity, and limited
availability of annotated data. Further, doing a simple per-
frame estimation is insufficient as it leads to jittery and im-
plausible results. In this paper, we propose a novel method
for temporally consistent motion estimation from a monocu-
lar video. Instead of using generic ResNet-like features, our
method uses a body-aware feature representation and an in-
dependent per-frame pose and camera initialization over a
temporal window followed by a novel spatio-temporal fea-

ture aggregation by using a combination of self-similarity
and self-attention over the body-aware features and the per-
frame initialization. Together, they yield enhanced spatio-
temporal context for every frame by considering remaining
past and future frames. These features are used to predict
the pose and shape parameters of the human body model,
which are further refined using an LSTM. Experimental re-
sults on the publicly available benchmark data show that
our method attains significantly lower acceleration error
and outperforms the existing state-of-the-art methods over
all key quantitative evaluation metrics, including complex
scenarios like partial occlusion, complex poses and even
relatively low illumination.
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1. Introduction
Recovering 3D human body pose, shape and mo-

tion from a monocular video is an important task that
has tremendous applications in augmented/virtual reality,
healthcare, gaming, sports analysis, human-robot interac-
tion in virtual environments, virtual try-on, etc. A lot of
work has been done in estimating 3D body pose and shape
from a single-image [3,13,18,30,32] by learning to regress
the explicit 3D skeleton or parametric 3D body model (e.g.,
SMPL [23]). However, many applications such as human
motion analysis, sports analytics, behavior analysis, etc.,
critically depend on the temporal consistency of human mo-
tion where single-image-based methods seem to fail fre-
quently. Temporally consistent 3D human pose, shape and
motion estimation from a monocular video is a challenging
task due to (self-) occlusions, poor lighting conditions, com-
plex articulated body poses, depth ambiguity, and limited
availability of annotated data. Efforts on monocular video-
based motion estimation [2, 16, 19, 24, 33, 35] typically in-
troduce a CNN or RNN module to perform spatio-temporal
feature aggregation from neighboring frames followed by
SMPL [23] parameters regression, thus modeling relatively
local temporal coherence. However, these methods tend to
fail while capturing long-term temporal dynamics and show
poor performance when the body is under partial occlusion.
Some of the recent works [8, 26, 34, 39] also attempt to
model the generative space of motion modeling using Con-
ditional VAEs, often followed by a global, non-learning-
based optimization at inference time using the entire video.
Such global optimization is also used in a very recent work
in [40] with a plug-and-play post-processing step for im-
proving the existing methods by exploiting long-term tem-
poral dependencies for human motion estimation. However,
due to the post-processing over the entire sequence, such
methods find limited applicability to real-world scenarios.

A highly relevant recent work, MPS-Net [38], attempts
to attain a good balance between local to global tem-
poral coherence using their MOtion Continuity Attention
(MOCA) module. More specifically, their method explic-
itly models the visual feature similarity across RGB frames
and uses it to guide the learning of the self-attention mod-
ule for spatio-temporal feature learning. MOCA enables
focusing on an adaptive neighborhood range for identifying
the motion continuity dependencies. This is followed by
a Hierarchical Attentive Feature Integration (HAFI) mod-
ule to achieve local to global temporal feature aggregation
through which they achieve SOTA performance. Neverthe-
less, similar to the majority of the existing methods, they
use ResNet [9]-like generic deep features extracted from
the RGB frames. However, such generic feature representa-
tions do not exploit the prior knowledge of human appear-
ance(that the 3D human body has a fixed topology and can
be represented by a parametric model). Additionally, [38]

do not exploit per-frame pose and shape initialization and
uses a computationally heavy Hierarchical Attentive Fea-
ture Integration (HAFI) module. Finally, they only perform
per-frame prediction using the aggregated spatio-temporal
features, thereby completely neglecting the joint estimation
performed by existing methods.

In this paper, we propose a holistic method that exploits
enhanced spatio-temporal context and recovers temporally
consistent 3D human pose/shape from monocular video. At
first, we select a set of continuous frames in a temporal
window and pass it to the Initialization module which ex-
tracts the body-aware deep features from individual frames
and in-parallel predict initial per-frame estimates of body
pose/shape and camera pose using an off-the-shelf method.
Subsequently, we pass these initial estimates and features
to novel Spatio-Temporal feature Aggregation (STA) mod-
ule for recovering enhanced spatio-temporal features. Fi-
nally, we employ our novel Motion estimation and Refine-
ment module to obtain temporally consistent pose/shape es-
timation using these enhanced features. Figure 2 provides
outline of our method.

In regard to functionality/relevance of these modules, the
initialization module extracts a body-aware feature repre-
sentation [29] for each frame of the local non-overlapping
temporal frame window, instead of the generic ResNet fea-
ture used by existing methods and the independent per-
frame pose and camera initialization estimated using [4].
This provides a strong spatial prior to our method. Fur-
ther, our proposed novel STA module computes the self-
similarity and the self-attention on initial spatial priors pro-
vided by the previous module. In particular, the self-
similarity between the body-aware features in a temporal
window helps us to correlate the body parts across frames
even in the presence of occlusion. Similarly, the self-
similarity among the pose parameters and the cameras re-
veals the continuity of the human motion along with the
camera consistency. We also use self-attention on the cam-
era parameters and the body-aware features. Together, they
yield spatio-temporal aggregated features for every frame
by considering the remaining past and future frames in-
side the window. Here, the joint characteristics of the self-
similarity and the attention map find the more appropriate
range in the input video to reveal the long-horizon context.
Finally, our novel motion estimation and refinement module
first predicts the per-frame coarse estimation of pose/shape
using the spatio-temporally aggregated features from the
STA module and subsequently passes it to an LSTM-based
joint-temporal refinement network to recover the temporally
consistent robust prediction of pose/shape estimates. In or-
der to generate continuous predictions near the temporal
window boundaries, we average the pose/shape parameters
for consecutive border frames across neighboring windows.
We empirically observed that applying LSTM-based joint
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refinement on pose/shape yields superior performance in-
stead of applying it on STA features and then predicting
pose/shape parameters (see subsection 4.4).

As a cumulative effect, our method produces signifi-
cantly lower acceleration errors in comparison to SOTA
methods (see subsection 4.1). Figure 1 shows a plot of ac-
celeration where our method yields the acceleration curve
(in green) closest to the ground truth acceleration curve (in
black). Moreover, owing to our enhanced spatio-temporal
context and motion refinement, our method significantly
outperforms the state-of-the-art (SOTA) methods even in
relatively poor illumination and severe occlusion (please re-
fer to subsection 4.2).

2. Related Works
Image based 3D human pose, shape and motion esti-

mation: Existing methods either solve for the parameters
of SMPL [23] from the images or directly regress the coor-
dinates of a 3D human mesh [6]. [13,18,30] are some of the
early succesful works for human pose and shape estimation
from monocular images.

HyBrik [21] and KAMA [12] leverage 3D key points
for the 3D mesh reconstruction. In particular, HyBrik uses
twist and swing decomposition for transforming the 3D
joints to relative body-part rotations. Instead of full body,
methods like HoloPose [5] and PARE [17] have introduced
parts parts-based model. While HoloPose does part-based
parameter regression, PARE uses a part-guided attention
mechanism for exploiting the visibility of individual body
parts and predicting the occluded parts using neighboring
body-part information. While these methods are quite ef-
fective for estimating the 3D pose and shape from images,
they are not capable of producing temporally consistent 3D
human motion from video by frame-based processing.

Video based 3D human and pose estimation: Re-
cently, a considerable amount of work has been carried out
to address the challenge of temporally consistent 3D hu-
man pose and shape estimation from video. For instance,
HMMR [14] trains a temporal encoder that learns a repre-
sentation of 3D human dynamics from a temporal context
of image features. Along with 3D human pose and shape,
such representation is also used for capturing the changes
in the pose in the nearby past and future frames. Similarly,
VIBE [16] proposes a temporal encoder that encodes static
features into a series of temporally correlated latent features
and feeds them to a regressor to estimate the SMPL param-
eters. MEVA [24] uses a two-stage model that first captures
the coarse overall 3D human motion followed by a resid-
ual estimation that adds back person-specific motion details.
However, these methods fail to reconstruct the humans un-
der partial occlusions. In a recent work by Choi et al. [2],
GRU-based temporal encoders are used with different en-

coding strategies to learn better temporal features from im-
ages. Also, they propose a feature integration from the three
encoders for the SMPL parameter regressor. GRU-based
techniques can only deal with local neighborhoods which
makes it difficult for them to learn long-range dependen-
cies. Hence, [1, 42] uses a transformer to learn long-range
temporal dependencies. However, such methods require a
large number of consecutive frames (around 250), making
them slower. Another class of methods like HuMoR [34]
and GLAMR [39] use variational autoencoder which takes
single frame-based human pose estimates to predict the hu-
man motion sequence in an auto-regressive way followed
by a non-learning based global optimization on the human
pose and trajectory obtained from the entire video for tem-
poral refinement. Similarly, SmoothNet [40] also does a
global optimization on the estimated trajectory of any hu-
man pose estimation method to improve their temporal con-
tinuity. The global optimization in the test time limits the
applicability of such methods. In a recent attempt, MPS-
Net [38] tries to produce locally global temporal coherence
using a motion continuity attention module (see section 1
for more details on MPS-Net [38]).

3. Method
In this section, we provide a detailed overview of the key

modules of our proposed method. As discussed in section 1
(and outlined in Figure 2), our method takes a set of consec-
utive frames as input and feeds it to the three key modules,
namely, initialization, spatio-temporal feature aggregation
and motion prediction & refinement, to predict temporally
consistent body pose and shape parameters of SMPL [23],
a statistical body model.

More specifically, given an input video V = {Fi}Ni=1

composed of N frames, with Fi representing the ith frame,
we aim to recover SMPL-based human body pose and shape
parameters for each frame, i.e., Θpred

i = {Ti, Ric, θi, βi}.
Here, Ti ∈ R3 and Ri ∈ R3 represents the translation and
rotation (in axis-angle format) of the root joint, θi ∈ R23×3

represents the relative rotations of the remaining 23 joints
while βi ∈ R10 represents body shape parameters. Please
note that we sample a temporal window (a subset of contin-
uous frames) of size W (we choose W = 16) from the input
video and learn/infer over it instead of doing inference on
all frames in the video sequence.

3.1. Initialization

Per-frame Body Pose and Camera Estimation: We
perform independent estimation of per-frame body pose
(θinit) and camera (ωinit) parameters using a SOTA
method (HMR2.0 [4]) and feed it as initialization to our
STA module.

Body-aware Spatial Feature Extraction: Recently,
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Figure 2. Overview of our proposed method.

Figure 3. Sample three-channel visualization of CSE Embeddings.

Continuous Surface Embedding (CSE) [29] was proposed
to learn body-aware feature representation for obtaining
dense correspondences across images of humans. CSE
predicts, per pixel 16-dimensional embedding vector
(associated with the corresponding vertex in the parametric
human mesh), thereby establishing dense correspondences
between image pixels and 3D mesh surface, even in the
presence of severe illumination conditions and (self-)
occlusions. Figure 3 shows the color-coded visualization
of CSE embeddings demonstrating its robustness to severe
illumination and/or occlusion scenarios. Thus, we propose
to extract and use the 16-dimensional body-aware spatial
features H = {Hi}Ni=1 using a pre-trained CSE encoder for
each frame Fi, such that:

Hi = Ψ(Fi) (1)

where, Hi ∈ R112×112×16.

3.2. Spatio-Temporal Feature Aggregation (STA)

The spatial features Hi extracted from each frame can be
directly regressed to estimate per-frame motion and shape
parameters. However, this typically leads to jittery and im-
plausible motion estimates as the predictions are not tempo-
rally consistent. One possible remedy to this is to use self-
attention across frames in a temporal window [37]. Inter-
estingly, [38] showed that a regular attention network is un-
reliable and can give high attention scores between tempo-
rally distant frames which would lead to inaccurate results.

They address this problem by using a Normalized Self-
Similarity Matrix (NSSM) in their MOCA module. Nev-
ertheless, their method only exploited the spatial features
for such self-attention guidance. Instead, as per the recent
trend of exploiting per-frame pose initialization [20, 39],
we propose to encode additional information to our tem-
poral features in terms of initial estimates of body pose and
camera parameters. More specifically, we obtain for each
ith frame the initial pose/shape and camera parameters us-
ing [4] as: Θinit

i = {Ti, Ri, θi, βi} and camera parameters
ωinit
i ∈ R3 (assume a weak perspective camera model). It

is important to note that we represent rotation using the 6-
dimensional vector representation [41] and then flatten them
into a single 144-dimensional vector to recover body pose
as: [Ri, θi] ∈ R144

Our STA module has three key blocks: (1) Frame-wise
Similarity Computation, (2) Frame-wise self-attention, and
(3) Feature Aggregation.
The first block deals with the computation of the three
{W ×W} self-similarity matrices, namely, NSSM (H) for
the Body-aware spatial features, NSSM ([R, θ]) for initial
body pose estimates and NSSM (ωinit) for initial camera
estimates. More specifically, we uplift [Ri, θi] and ωinit

i ∈
R3 to 512 dimensions using linear layers Γ1 and Γ2 and
similarly transform the spatial feature Hi to 2048 dimen-
sions using Γ3. These multiple NSSMs help us to correlate
the frames based upon body parts appearance, body pose,
and cameras thereby giving robustness to occlusions as well
as revealing the continuity of the human motion along with
the camera consistency.
The second block obtains a self-attention map on our spatial
features i.e., AM (H) and initial camera estimates i.e., AM
(ωinit), respectively. When applying self-attention on our
spatial features Hi ∈ R112×112×16, first we transform them
to 2048 dimension using a linear layer Γ3 , and later down-
sample them to RN×1024 by learning two different 1 × 1
convolution layers Φ3 and Φ4. Similarly, when applying
self-attention on the initial camera estimates, we first uplift
this vector to 512 dimension vector using an MLP Γ2 and
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subsequently learn two different 1×1 convolution layers Φ1

and Φ2. This self-attention on the camera parameters and
the body-aware features help us adaptively find the range
which is important to capture the temporal smoothness.

Finally, the feature aggregation block first concatenates
all the attention and NSSM maps to get a W ×W × 5 ten-
sor and later resize it to W ×W matrix using a 1 × 1 con-
volution layer (Φ6). This W × W represents the consol-
idated similarity between frames across the window. This
feature is subsequently multiplied with the down-sampled
spatial features (of 1024 dimension obtained by Φ5) and the
result is then uplifted (using convolution layer Φ7) to get
Y ∈ RW×2048. Thus, together, they yield spatio-temporal
aggregated features for every frame by considering the re-
maining past and future frames inside the window. The per-
frame temporally aggregated feature Yi is finally added to
the spatial features to get the spatio-temporally aggregated
features Zi for ith frame as:

Zi = Hi + Yi. (2)

3.3. Motion Estimation & Refinement

Once we have the spatio-temporal features Zi, we obtain
an independent coarse pose/shape, and camera estimation
for each frame using predictor network (g)

Θcoarse
i , ωpred

i = g(Zi) (3)

where g predicts the SMPL parameters i.e., Θcoarse
i ∈ R85

and the camera parameters i.e., ωpred
i ∈ R3 for frame Fi.

We propose to further refine these estimated independent
coarse poses and shapes (obtained using spatiotemporally
aggregated features) using an LSTM [10] based joint resid-
ual prediction. The LSTM ζ takes as input the features
Zi and coasre SMPL pose estimates Θcoarse

i and predicts
the residual Θres

i ∈ R85 , which is subsequently added to
Θcoarse

i in order to recover the refined pose and shape pa-
rameters Θpred.

Θres
i = ζ(Zi,Θ

coarse
i ) (4)

Θpred
i = Θcoarse

i +Θres
i (5)

To ensure temporally consistent predictions at the window
boundaries, we average the pose and shape parameter esti-
mates of bordering frames across the neighboring windows.

3.4. Loss Functions

Similar to existing literature [13, 16, 38], we adopt loss
functions on body pose and shape (LSMPL), 3D joint
coordinates (L3D), and 2D joint coordinates (L2D) ob-
tained with predicted weak-perspective camera parameters
(ωpose). These loss functions are briefly explained below.

LSMPL = λshape||β̂i − βi||2
+ λpose||{R̂i, θ̂i} − {Ri, θi}||2

(6)

where βi and {Ri, θi} respectively are the predicted pose
and shape parameters for the ith frame, and β̂i, {R̂i, θ̂i} are
the corresponding ground-truths.

L3D = ||Ĵc
i − Jc

i ||2 (7)

where Jc
i represents predicted the 3D joint coordinates for

the ith frame and Ĵc
i are the corresponding ground-truth 3D

joint coordinates.

L2D = ||x̂i −Π(Jc
i )||2 (8)

where x̂i represents the ground-truth 2D keypoints for the
ith frame and Π represents the 3D-2D projection obtained
from the predicted camera parameters ωpred.

The final loss function is a linear combination of these
losses defined as:

Lfinal = λ1LSMPL + λ2L3D + λ3L2D (9)

It is important to note that our model is trained in an end-
to-end trainable fashion where Lfinal is applied on the final
predicted pose and shape parameters obtained from LSTM
ζ. There is no separate training performed for the coarse
estimation predictor g.

4. Experiments and Results
Datasets Details: We adopt the same train/test splits of
Human3.6M [11], 3DPW [36] and MPI-INF-3DHP [27]
datasets used by existing work [2, 16, 38]. Human3.6M is
a large scale dataset containing video sequences with corre-
sponding 3D pose annotations of various subjects perform-
ing different actions like discussion, smoking, talking on
the phone etc. Similar to existing work [2, 16, 38], we
use the sub-sampled dataset (25 FPS) for our experiments.
MPI-INF-3DHP contains 8 subjects with 16 videos per sub-
ject. It is captured in a combination of indoor and outdoor
settings with actions ranging from walking and sitting, to
complex dynamic actions like exercising. It is captured
by a markerless motion capture system using a multi-view
camera setup. 3DPW is an in-the-wild dataset, captured
with a moving cell-phone camera. It uses inertial mea-
surement unit (IMU) sensors patched to the human body
parts to calculate the ground-truth SMPL [23] parameters.
It contains 60 video sequences with 18 3D models in dif-
ferent clothing, performing daily-life activities like walk-
ing, buying vegetables etc. Further, in order to evaluate
the generalization ability of our method to unseen data, we
use three additional datasets: Fitness-AQA [31], PROX [7]
and i3DB [28]. These datasets contain sequences having
actions/motion fairly different from our training datasets.
Fitness-AQA contains videos of subjects lifting weights in
a gym, which leads to self-occlusion and complex body
poses, while PROX and i3DB contain video sequences of
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Method Human3.6M [11] 3DPW [36] MPI-INF-3DHP [27]

PA-MPJPE↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ MPVPE↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ ACC-ERR↓
VIBE [16] 41.4 65.6 - 51.9 82.9 99.1 23.4 64.6 96.6 -
MEVA [24] 53.2 76.0 15.3 54.7 86.9 - 11.6 65.4 96.4 11.1
Uncertainty-Aware [19] 38.4 58.4 6.1 52.2 92.8 106.1 6.8 59.4 93.5 9.4
TCMR [2] 52.0 73.6 3.9 52.7 86.5 102.9 7.1 63.5 97.3 8.5
MPS-Net [38] 47.4 69.4 3.6 52.1 84.3 99.7 7.4 62.8 96.7 9.6
HUMOR [34] 47.3 69.3 4.2 51.9 74.8 81.4 6.3 63.2 98.1 8.4
GLAMR [39]∗ 48.3 72.8 6.0 51.7 72.9 86.6 8.9 60.17 96.2 8.9
D&D [20]† 35.5 52.5 6.1 42.7 73.7 88.6 7.0 - - -
Our Method 31.0 41.3 3.3 39.2 63.5 61.8 5.3 53.2 88.7 8.1

Table 1. Quantitative Comparison of our method with other monocular video-based methods. Best is in bold and second best is underlined.
(∗: GLAMR uses Human3.6M, 3DPW and AMASS [25] as 3D datasets | †: D&D performs individual training on Human3.6M and 3DPW)

humans interacting with objects in an indoor setting like a
room/office.
Evaluation Metrics: We use the standard evaluation met-
rics used in existing literature [2, 16, 24, 38] to evaluate
our method’s performance. Specifically, we use the mean
per joint position error (MPJPE), Procrustes-aligned mean
per joint position error (PA-MPJPE), mean per vertex po-
sition error (MPVPE) and acceleration error (ACC-ERR).
MPJPE is defined as the mean of the Euclidean distances
between the ground truth and the predicted joint positions.
PA-MPJPE is defined as the MPJPE computed after using
Procrustes alignment (PA) to solve for translation, scale and
rotation between the estimated body and the ground truth.
MPVPE is given by the mean of the Euclidean distances be-
tween the ground truth and the predicted vertex positions of
each vertex in the SMPL [23] body model constructed using
the predicted pose/shape parameters. Finally, (ACC-ERR)
is defined as the mean difference between the accelerations
of the ground truth and predicted 3D joints. Specifically, the
change in position of the 3D joints in unit time (i.e. across
two consecutive frames) gives us the velocity of the joints,
and the change in velocity in unit time gives us the accel-
eration. Acceleration error is then measured by finding the
difference between the groundtruth and predicted acceler-
ations. MPJPE, PA-MPJPE and MPVPE are measured in
millimeters (mm) and express the fidelity of the estimated
3D pose and shape. While ACC-ERR, measured in mm/t2

(where t denotes unit time - the time interval between two
consecutive frames) expresses the temporal consistency of
the estimation.

Method Fitness-AQA [31] PROX [7] i3dB [28]
MPJPE ↓ ACC-ERR↓ MPJPE↓ ACC-ERR↓ MPJPE↓ ACC-ERR↓

TCMR [2] 89.3 7.6 29.7 2.3 47.1 3.1
MPS-Net [38] 64.7 6.1 22.1 1.9 35.5 2.7
Our Method 43.5 5.3 18.3 1.6 21.6 2.1

Table 2. Generalization results on unseen datasets.

Implementation Details: We obtain the body aware fea-
tures and per-frame pose/camera initializations using the
pre-trained CSE [29] and HMR2.0 [4] models, respectively.

Similar to existing work [2, 16, 38], we initialize our pose,
shape, and camera predictor in the motion estimation and
refinement module with the pre-trained SPIN [18] check-
point. In the same module, the LSTM has 3 layers and uses
2048 as the hidden feature size. Training is performed for
35 epochs with a mini-batch size of 32 and an initial learn-
ing rate of 5×10−5. The learning rate is reduced by a factor
of 10 every time the 3D pose accuracy does not improve for
the 5 consecutive epochs. Adam Solver [15] is used for op-
timization. For our experiments, we use a window size of 16
(see Table 5 for discussion on choice of window size). We
set the coefficients for LSMPL, L3D and L2D to 300.0, 0.06
and 60.0 respectively. Training is done for 35 epochs and
takes about 7 hours using 3 NVIDIA RTX A-6000 GPUs.

4.1. Quantitative Results

Table 1 provides a quantitative comparison between
our method and existing SOTA monocular video-based
methods. All methods use the same 3D datasets as
ours with standard training/test split, except GLAMR [39]
(which uses Human3.6M, 3DPW and AMASS datasets)
and D&D [20] (which trains individually on Human3.6M
and 3DPW). Some of these methods also utilize additional
2D datasets for training and we used their pre-trained model
for comparison. However, we only rely on the 3D datasets
for training. It can be observed from Table 1 that our
method significantly outperforms existing methods over all
metrics across datasets, demonstrating the superiority of our
method.

4.2. Qualitative Results

Figure 4 visualize qualitative comparison with monoc-
ular video-based SOTA methods. More specifically, row-
1 shows a complex pose under poor illumination. It can
be observed that while all other methods fail to recover the
body pose, our method successfully recovers the body pose
reliably. In rows 2-4, it can be observed that while other
methods are also able to recover the pose, our method pro-
vides more accurate SMPL fitting. In the last two rows, we
demonstrate results on even more challenging cases involv-
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Figure 4. (A) We show the estimated pose overlaid on the frames of the sample videos from Human3.6M [11], 3DPW [36], and MPI-INF-
3DHP datasets [27]. (B) Similar results are shown in comparison to D&D [20].
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Figure 5. Qualitative comparison across frames on a sequence of 3DPW dataset. The green arrows show the improved regions compared
to the red ones. Our method is able to achieve more accurate and more temporally consistent SMPL fitting.

ing significant occlusion, where most existing methods fail
even to detect the human. However, our method not only

detects the human but also provides a reasonable SMPL fit-
ting. Additionally, in Figure 5, we demonstrate the results
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Configuration Human3.6M [11] 3DPW [36] MPI-INF-3DHP [27]

PA-MPJPE ↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE ↓ MPJPE↓ ↓ ACC-ERR↓ PA-MPJPE ↓ MPJPE↓ ACC-ERR↓
1. Ours w/o Body-Aware Features (i.e., w/o H) 34.8 45.0 3.5 41.6 67.3 5.3 56.4 91.8 8.3
2. Ours w/o Per-Frame initialization (i.e., w/o {Rinit, θinit} and w/o ωinit) 43.8 71.9 4.2 49.8 78.5 5.5 61.4 93.4 8.4
3. Ours w/o pose initialization (i.e., w/o {Rinit, θinit}) 41.5 53.2 3.6 48.1 74.7 5.5 58.6 93.2 8.4
4. Ours w/o camera initialization (i.e., w/o ωinit) 37.3 49.1 3.5 47.3 73.8 5.4 57.2 91.8 8.3
5. Ours w/o LSTM based refinement on coarse estimates (i.e., w/o ζ) 32.7 42.8 3.5 40.3 69.3 5.6 54.6 90.3 8.4
6. Our Final Method 31.0 41.3 3.3 39.2 63.5 5.3 53.2 88.7 8.1
7. Ours + AM on pose (i.e., AM on {Rinit, θinit}) 33.8 44.8 3.4 42.7 68.0 5.3 56.8 90.7 8.3
8. Ours w. LSTM on Feature Space (followed by refined estimation of shape/pose) 39.2 47.2 4.0 44.3 72.9 5.8 58.7 92.6 8.3

Table 3. Ablation study on our method’s performance in different configurations. (Best is in bold.)

of MPS-Net [38], GLAMR [39] and our method across mul-
tiple frames of a video sequence where the person is trying
to lift the bag. It can be observed that the head orientation
and the proximity of the hand to the bag are more tempo-
rally consistent in our method compared to other methods.
Further, the SMPL fitting is also better for our method.

4.3. Generalization to Unseen Datasets

We also test the generalization ability of our method by
evaluating its performance on completely unseen Fitness-
AQA [31], PROX [7] and i3DB [28] datasets. These
datasets contain diverse scenarios and were not seen dur-
ing training done on Human3.6M, 3DPW, and MPI-INF-
3DHP. As reported in Table 2, our method significantly out-
performs existing SOTA on unseen datasets, demonstrating
our method’s generalization ability. We also show a quali-
tative comparison for the same in Figure 6. It can be seen
that our method estimates pose and shape more accurately
than other SOTA methods.

4.4. Ablation Study

We perform a detailed ablative study to analyze the con-
tributions of different components of our method. Table 3
provides the quantitative ablative results, which list our fi-
nal method’s performance in row-6. We sequentially re-

moved each component of our method and reported the per-
formance drop in rows 1-5. More specifically, row-1 re-
ports the results where we replace our body-aware feature
encoder with generic ResNet. This leads to a drop in per-
formance, demonstrating the contribution of the body aware
features to our overall performance. In row-2, we train our
network without using the per-frame pose and camera ini-
tialization. This too leads to a drop in the model perfor-
mance. In row-3 & row-4, we report the performance of
the model by individually removing the pose initialization
and camera initialization. The results demonstrate that both
pose initialization and camera initialization contribute in-
dividually to our method’s performance. In row-5, we re-
port the performance by removing the LSTM-based mo-
tion refinement component, and once again find a drop in
performance, especially in the ACC-ERR metric, demon-
strating the contribution of the motion refinement module.
We also report two additional ablative results in the last two
rows of Table 3 as modifications to our proposed method.
Specifically, row-7 reports the performance of the modified
method by adding the self-attention on the body pose ini-
tialization to our method. However, unlike self-attention
on body-aware features and camera pose, we empirically
find that self-attention on body pose leads to a degradation
in performance. One possible explanation for this degra-
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Method Human3.6M [11] 3DPW [36] MPI-INF-3DHP [27]

PA-MPJPE↓ MPJPE↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ ACC-ERR↓
PARE [17] 53.8 72.8 6.9 46.5 74.5 7.1 63.1 95.7 9.3
Ours w. PARE 42.6 66.4 4.1 49.3 67.3 5.4 58.7 93.3 8.1
CLIFF [22] 32.7 47.1 6.7 43.0 69.0 7.3 62.4 96.7 9.3
Ours w. CLIFF 31.2 42.7 5.7 39.3 65.1 6.7 59.3 94.2 8.3
HMR 2.0 [4] 33.8 45.3 3.8 44.4 69.8 5.6 57.1 91.9 8.4
Our Method (uses HMR2.0 initialization) 31.0 41.3 3.3 39.2 63.5 5.3 53.2 88.7 8.1

Table 4. Evaluation of our method with different per-frame initializers. (Best is in bold.)

Window size Human3.6M 3DPW MPI-INF-3DHP

PA-MPJPE ↓ MPJPE ↓ ACC-ERR ↓ PA-MPJPE ↓ MPJPE ↓ MPVPE ↓ ACC-ERR ↓ PA-MPJPE ↓ MPJPE ↓ ACC-ERR
8 frames 31.3 41.7 3.4 40.1 64.4 62.3 5.4 54.7 89.0 8.2
16 frames 31.0 41.3 3.3 39.2 63.5 61.8 5.3 53.2 88.7 8.1
32 frames 32.0 42.0 3.8 40.7 65.8 63.1 5.4 55.3 89.2 8.2

Table 5. Ablation study on performance of our method with different temporal window sizes. (Best is in bold).

dation is that self-attention to body poses can sometimes
be misleading due to the frequently repeating body poses
in a temporal window (e.g. walking involves very similar
body poses). Nevertheless, we observed that using self-
similarity (NSSM) on body pose helps as it exploits the
spatio-temporal ordering (see row-3 & row-6). Finally, in
row-8, we report the performance of an alternate setup for
temporal refinement where we use the LSTM to aggregate
temporal features before passing them to the pose/shape
predictor, thereby eliminating the coarse prediction step.
However, this leads to a drop in performance. As an expla-
nation to this, we hypothesize that learning pose/shape cor-
rections is more conducive to LSTM and hence our method
provides a better estimate of body pose.

In addition, we evaluate the performance of our method
with different per-frame initialization methods and report
results in Table 4. It can be observed that our method con-
sistently improves over the per-frame initialization methods
(especially in terms of acceleration errors).

Furthermore we examine the performance of our method
by varying the choice of temporal window sizes. These re-
sults are reported in Table 5. Similar to existing works [2,
16, 38], we find that a temporal window of size 16 provides
optimal performance.

5. Discussion
Recovering from Bad Initialization: The spatio-temporal
feature aggregation (STA) provides our method tempo-
ral context by considering the remaining past and future
frames. This allows our method to recover accurate pose
and shape even when CSE [29] and HMR2 [4] are not able
to provide good initializations. We show few such results in
Figure 7.
Limitations and Future Work: As shown in Figure 8, our
method can fail in scenarios containing humans with ex-
tremely loose clothing as it is difficult to localize the under-

lying body in such scenarios. We plan to explore extension
of our work to loose clothing in the future.

6. Conclusion
We proposed a novel method for recovering temporally

consistent 3D human pose and shape from monocular video.
Our method utilizes body-aware spatial features along with
initial per-frame SMPL pose parameters to learn spatio-
temporally aggregated features over a window. These fea-
tures are then used to predict the coarse SMPL and cam-
era parameters which are then further refined using a joint
prediction of motion with LSTM. We demonstrate that our
method consistently outperforms the SOTA methods both
qualitatively and quantitatively. We also reported detailed
ablative studies to establish relevance of key components of
proposed method. As part of future work, it will be inter-
esting to see extension of this work for humans with very
loose garments (e.g., robes/abaya).
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Figure 7. Temporal context provided by STA module allows our method to recover accurate pose and shape even when CSE/HMR2.0 are
unable to provide a good initialization. Notice that in the 2nd and 3rd rows of (B), the HMR2.0 prediction is oriented wrongly.
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Figure 8. Our method can fail for humans in extremely loose clothing as it is difficult to localize the underlying body in such scenarios.
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