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Figure 1: 3D template-free textured digitization of loose garment obtained with our framework from a single RGB image.

Abstract

We propose a novel framework for template-free textured
3D garment digitization from RGB image(s). We employ
implicit geometry modeling and novel diffusion-guided gar-
ment mesh extraction & partitioning followed by a novel,
self-supervised neural UV parametrization, and texture fill-
ing to obtain mesh and associated texture atlas represen-
tation of garments. The key novelty of our method is the
learnable discretization-agnostic UV parametrization of ar-

*These authors contributed equally to this work.

bitrary garment surfaces along with automated partition-
ing of garments. Existing approaches for UV parameteri-
zation either fail to parameterize the bounded surface be-
cause of noisy mesh or are time-consuming in iterative op-
timization. Because of the optimization behaviour, the loss
function needs to be minimized again, even if the minimal
discretization of the surface is changed. We overcome these
issues by learning a neural representation of the 3D to a 2D
mapping function. We also show that, with diffusion-based
global embedding, the parameterization can be generalized
to unseen garment shapes. We perform a comprehensive

1



empirical analysis on the publicly available datasets and
report superior results to existing methods for garment ex-
traction, as well as UV parametrization.

1. Introduction
3D digitization of garments from single or multi-view

images is a challenging research problem with key appli-
cations in domains such as fashion e-commerce, gaming,
and multi-media. This problem is typically perceived as
closely related to another well-attempted problem of human
body digitization from image(s) [12, 19, 8]. Modelling the
human body is not straightforward due to challenges like
varying articulation, self-occlusions, depth-ambiguity etc.
However, unlike the human body, which has a more-or-less
similar topology across different subjects, garment mod-
elling poses even tougher challenges as different clothes
have arbitrary topologies and styles owing to inherent artis-
tic ideation in the designs. Additionally, the underlying
cloth surface is subject to non-rigid deformations, which
vary according to associated material attributes, stitching
patterns, pose & shape of the underlying body, and exter-
nal environmental factors such as wind, illumination, etc.
Garment designers rely on professional software solutions
which employ traditional template-based 3D garment mod-
elling. Hence, initial learning-based techniques naturally
acclimate to template-based strategy for garment digitiza-
tion [1, 20, 6, 21]. Apart from providing a strong geomet-
rical prior for garments, a template also enables retaining a
high-quality visual appearance by leveraging the associated
fixed UV parameterization. However, template-based dig-
itization is restricted to limited clothing styles and fails to
generalize to the styles for which the template is unavail-
able; hence, it is not accustomed to new frontiers of artistic
creativity and is not scalable in fast-fashion scenarios. A
very recent work xCloth [16] attempted template-free tex-
tured reconstruction of arbitrary garments using monocu-
lar images. Nevertheless, their method is not generalizable
to multi-view RGB images, and garment geometry highly
depends on the fitting of the parametric SMPL [11] body
prior (as they adopt [8] for 3D reconstruction). Moreover,
their reconstruction method, the sparse PeeledHuman [7]
representation, which typically yields noisy geometry due
to per-pixel(ray) depth prediction and also requires signifi-
cant post-processing, including Poisson hole-filling around
peel-map boundaries. Another key limitation of their work
is that the UV mapping is obtained using conventional, nu-
merical optimization methods that are not computationally
scalable to high-resolution meshes. Thus, we aim to address
these limitations by proposing a single/multi-view implicit
garment reconstruction and learnable UV parameterization
on top.

Some of the existing efforts for learning the UV param-

eterization in a self-supervised setup attempt to model the
surface using multiple patches [4, 17] resulting in many
seams. A recent work [18] proposes to leverage the power
of NeRF to generate an object-centric cube-map textured
representation but works only for genus-0 surfaces and re-
quires a significantly large number of multi-view images.
Thus, it is not suitable for single or few-view reconstruc-
tion, and moreover, a basic cube-map representation is not
ideal for modelling garments with arbitrary styles. A recent
work in [2] attempts to learn UV parameterization in a self-
supervised setup. However, it can only generalize to the
objects of similar topology (e.g., human faces) oriented in
the same poses, which doesn’t hold for in-the-wild garment
modelling. Please refer to the Supplementary material for a
detailed literature review.

In this paper, we propose a novel framework for the
template-free textured 3D digitization of arbitrary garments
from single/multi-view images. We employ implicit ge-
ometry modelling and diffusion-guided semantic segmen-
tation to extract and partition 3D garments. Subsequently,
we introduce a novel, self-supervised neural UV parame-
terization method for arbitrary surfaces and apply it over
the extracted garment partitions to obtain texture atlas rep-
resentation, followed by texture filling. Figure 1 depicts
the intermediate output of our proposed framework. The
key novelty of our method is the learnable discretization-
agnostic UV parameterization of arbitrary garment surfaces
along with automated partitioning of garments. Existing
approaches for UV parameterization either fail to param-
eterize the bounded surface because of noisy mesh or are
time-consuming in iterative optimization. Hence, their loss
function needs to be minimized again, even if the minimal
discretization of the surface is changed. Our framework
overcomes these issues by learning a neural representation
of the 3D to 2D mapping function. We also show that, with
the use of diffusion-based global embedding, the parame-
terization can be generalized to the unseen garment shapes.
We perform a comprehensive empirical analysis on the pub-
licly available datasets and report superior results to existing
methods for cloth extraction, as well as UV parameteriza-
tion.

2. Proposed Framework
Figure 2 provides an overview of the proposed frame-

work consisting of three key modules. Given a single
monocular RGB image I, our “Garment Extraction” mod-
ule reconstructs the mesh M and extracts the 3D garment
Mgar by learning the semantic segmentation over the mesh
surface. Subsequently, the extracted garment Mgar is then
fed to our novel “Neural Surface Parameterization” module,
which learns to parameterize the underlying surface. This
is achieved by finding the underlying seams of the garment
followed by neural parameterization, which is learned in a



Figure 2: An overview of the proposed framework.

complete self-supervised setup. Finally, we use the pixel-
aligned texture filling and in-painting in our last module
“Texture Map Filling” to get the final texture map T .

2.1. Garment Extraction

This module adopts a two-step approach to recover the
3D geometry of the garment. In the first step, we learn the
implicit function to reconstruct 3D geometry of the clothed
body from input RGB image(s) and then extract the gar-
ment using semantic understanding in the second step. For
the first step, inspired by the popular implicit representa-
tion [12], we formulate the problem to estimate the con-
tinuous occupancy field in a 3D volume. Given enough
training examples, the network learns to estimate the iso-
surface of the underlying geometry, which can be extracted
with the help of the marching cubes algorithm. This ap-
proach is helpful in generating smooth geometry, which is
crucial for later stages. Once the geometry of a clothed hu-
man is reconstructed, we extract the garment by learning
semantic segmentation over mesh for different cloth labels,
namely ”top-wear”, ”bottom-wear”, and ”body”. [21] uses
a similar approach for cloth extraction but learns the se-
mantic field along with the geometry using implicit function
learning. However, this approach in absence of a boundary
field produces poor results for boundaries of segmentation

as discussed in subsection 4.1. Thus, we propose to dis-
entangle the learning of the semantic labels from geometric
reconstruction by learning the segmentation directly over
the mesh surface. For this task, we leverage the diffusion-
guided propagation of features and hence train DiffusionNet
[14] architecture as the underlying baseline and minimize
Lsemantic .

Lsemantic =

S∑
s=1

Ps
semanticlog(P̂s

semantic) (1)

Here P̂s
semantic is the probability of assigning the label

to a pixel s whereas Ps
semantic is the ground truth label. We

use S = 3 in our experiments.

2.2. Neural Surface Parameterization

Our main goal is to recover the textured garment of ar-
bitrary topology, so UV parameterization of extracted gar-
ment mesh is necessary. This module consists of our novel
self-supervised neural surface parameterization approach,
where we first attempt to learn to estimate valid seems for
partitioning the mesh into multiple regions, followed by
self-supervised neural UV parameterization of each region.
An outline of the proposed approach is shown in Figure 3.



Figure 3: Overview of the Neural Surface Parameterization module.

2.2.1 Learnable Garment Partitioning

Let the extracted garment geometry is represented as mesh
Mgar. We need to partition the mesh surface before UV
parametrization as unbounded and compact surfaces need
to be divided into multiple partitions so that the distortion
and overlaps in the UV space are minimal. We propose to
estimate mesh partitioning as a vertex labeling task in a su-
pervised setup. More specifically, let Mk

gar ⊂ Mgar be
the k-th partition from a set of total K mesh partitions. In-
spired by the [14], we propose SeamNet which takes the
extracted garment Mgar and estimate the mesh partition-
ing by assigning the probability P̂k

seam to kth partition. We
train SeamNet in a supervised setting using the following
objective function:

Lseam =

K∑
k=1

Pk
seamlog(P̂ k

seam) (2)

Here, Pk
seam is the ground truth seam labels.

2.2.2 Self-Supervised Neural Parameterization

Each individual mesh partitions Mk
gar is then passed to our

novel neural parameterization network, which learns to map
the surface to 2D UV space. Let f : R3 → R2 be the map-
ping function that maps each mesh vertex 3D position in
world space to 2D position in UV space. We learn this map-
ping function by representing it with the neural network.
Inspired by the fundamental nature of texture mapping, we

learn to map the individual facets of the 3D surface to UV
space instead of mapping it in per-vertex manner. We ar-
gue that this formulation considers the surface triangulation
providing more constraint for mapping function.

More specifically, let (Vk,Fk) are the vertices and facets
of Mk

gar and we intend to recover UV mapping for all Vk,
represented as Uk where each element of this set is the UV
position of corresponding mesh vertex i.e., U i

k ∈ R2. We
input Vk to the diffusion module (adopted from [14]) to
get a global shape embedding ξ ∈ R64. Note that we
model each facet of the mesh as a set of three participat-
ing vertices (for a triangulated mesh) defining a facet fea-
ture (of dimension R3×3). We concatenate global shape
embedding ξ with these per-face features of Mk

gar to ob-
tain a R3×(3+64) vector which can be reshaped to R201.
We pass this per-face feature vector to the forward mapping
MLP Fforward which outputs the R3×2 dimensional UV
position for each vertex of the respective facet. However,
each vertex may participate in multiple faces; we propose
to compute a mean UV position for each vertex of the mesh
by taking an average over independently predicted UV po-
sitions across multiple faces sharing that vertex. In order
to learn this mapping in a self-supervised manner, we em-
ploy cycle-consistency loss by learning an inverse mapping
f−1 : R2 → R3. We use the network architecture similar
to the Fforward to train a backward MLP Fbackward which
takes R3×(2+64) dimensional input vector after concatenat-
ing U i

k with ξ and maps it to the 3D world positions Vk.
Additionally, we also impose another loss function to reg-



ularize the UV mapping by minimizing the difference be-
tween geodesic and Euclidean distance between every pair
of vertices over Mk

gar. Let, Dgeodesic ∈ RVk×Vk is a ma-
trix of pairwise geodesic distance of each vertex with an-
other vertex position and Deuclidean ∈ RUk×Uk is a matrix
of pairwise euclidean distance of each mapped UV with an-
other UV position.

We define the complete objective function as follows:

Lnp = λcycleLcycle + λgeoLgeo (3)

Lcycle =
1

|Vk|
∑

v∈Vk,u∈Uk

(v −Fforward(u))
2 (4)

Lgeo = |Dgeodesic −Deuclidean|2 (5)

2.3. Texture Map Filling

Once the neural parameterization is done, and the UV
atlas is generated, the final task is to fill the UV map faith-
fully using the input RGB image(s). This is achieved by
doing pixel-aligned texture filling followed by structured in-
painting.

We leverage the information present in the input image
to fill the learned UV atlas. Since our geometry reconstruc-
tion module uses implicit function learning, the alignment
between parameterized mesh regions and image space is
knowm apriori. Thus, we can fill the UV map by assigning
the RGB value of each texel (UV map pixel) by projecting
the corresponding 3D point on the mesh to the correspond-
ing input image space.

However, some texels remain unfilled as they correspond
to 3D points on mesh surfaces that are unobserved in RGB
images either due to a lack of enough input camera views
or caused by self-occlusion by body/cloth. However, this
should be a small portal of texels if we are given enough
multi-view images. Nevertheless, it is important to recover
complete texture filling; hence, similar to [16], we use struc-
tured in-painting to fill the missing regions for each in-
dependent UV map by simply providing the filled texture
map as initialization. This allows us to in-paint the high-
frequency textures for the underlying garment.

3. Experiments & Results
3.1. Implementation Details

Here we provide implementation details, including ar-
chitectural details and various parameters used for training
the networks across multiple modules. We employ the orig-
inal PIFu [12] architecture to learn to reconstruct the initial
clothed body model from input RGB image(s). We used
DiffusionNet [14] architecture with 4 blocks, channel width
of 128 and Eigen basis 128. Relu activations are used for

intermediate layers, log softmax is used for the semantic la-
bel prediction, and softmax for SeamNet. The DiffusionNet
block used in the parameterization module uses tanh acti-
vation function in the final layer. We partition the garments
into K = 2 partitions, namely, “front” and “back”. The for-
ward and backward MLP (i.e., Fforward and Fbackward)
use 8 hidden layers with LeakyReLU activation function
and tanh at the final output layer. The lambda weights used
in Eq.5 are λcycle = λgeo = 1.0. ADAM optimizer is used
in the training of all the networks, with a learning rate of
0.001, and batch size is set to 1. RTX 2080Ti GPU is used
for training of all the networks. In case of single input, view
is available, we fill both the front and back texture maps
with the same input image and inpaint the remaining part
using the structure inpainting [5] to avoid seams.

3.2. Evaluation Metrics

We are using the following evaluation metrics for the
evaluation of our learned model.

Intersection Over Union (mIOU): IOU is a ratio of
the area of overlap between the predicted segmentation and
ground truth segmentation to the area of union between
them. Since we learn the segmentation directly over the
mesh surface, we calculate the IOU of predicted face labels
and ground truth face labels. Finally, we report mean IOU
across all semantic segmentation labels.

Accuracy (mACC): Accuracy is the percent of segmen-
tation labels correctly assigned. Here mean accuracy over
the faces across all labels is calculated and reported as a
measure of performance of the semantic segmentation task.

Area and Angle Stretch: We use the angle and area
stretch of open-source software Blender to plot the distor-
tion plot in the UV parameterization.

PIFu Our method
Loss mIOU↑ mACC↑ mIOU↑ mACC↑

3dHuman 0.8352 0.7238 0.9232 0.8354
THUman2 0.7605 0.8823 0.8758 0.9387

Table 1: Comparison of results Implicit field learning and
our method on segmentation task.

3.3. Datasets

We use following datasets for training and evaluation.
THUman2.0: This dataset contains 500 high-quality hu-

man scans captured by a dense DSLR rig. We manually
curated segmentation labels.

3DHuman: This dataset contains around 250 meshes of
people in diverse body shapes in various garment styles. It



Figure 4: 3D garment digitization generalization results on in-the-wild internet images.

Optcuts BFF Ours
2k 1.795 sec 0.1 sec 0.09 sec
8k 4.80 sec 1.00 sec 0.35 sec
35k 53.5 sec 2.00 sec 1.91 sec

100k 10 min + 14.0 sec 7.33 sec

Table 2: Comparison of the inference time of our method
with existing methods at various input vertices resolution.

covers a wide variety of clothing styles, from relatively tight
garments to very loose garments. Similar to THUman2.0
we, manually curate the segmentation labels.

3.4. Quantitative Evaluation

We evaluate our neural parameterization with existing
methods (BFF [13], ABF [15], LSCM [9], OptCut [10],
Blender SmartUV [3]) in terms of inference time and report
in Table 2 that our method is superior to them. We take a
mesh (with only front partition) from the 3DHumans dataset
and decimate it to 2k vertices. We train our neural parame-
terization network on this low resolution mesh and infer on
different discretization levels of the same mesh. Note that
other deterministic parameterization methods can not use
this functionality as they have to minimize the loss function
again even if there is a minimal change in mesh connectiv-
ity. This leads to the increase in their run-time as big as



Figure 5: Comparison of UV parameterization computed with optimization based various deterministic methods ([13], [15],
[9], [10], [3]) and our self-supervised learning approach. Columns (a) and (b) point to the angle and area stretch.

10 minutes as shown in Table 2. However, our method is
discretization agnostic and thus can UV parameterize high
resolution meshes with low inference time.

3.5. Qualitative Evaluation

We showcase the qualitative results of our framework on
internet images to claim generalizability, as shown in Fig-
ure 4. Note that our framework can yield highly plausible
high-frequency textural details while faithfully reconstruct-

ing the UV atlas. Please refer to our supplementary mate-
rial for more qualitative results including comparison with
SOTA methods.

Since our key novelty is learning based surface param-
eterization, we compare our method with the existing op-
timization based UV parameterization methods. Note that
in case of texture mapping, we want to minimize both area
and angle distortion so that texture editing and other texture
manipulation tasks do not get affected much. As shown in



Figure 5, row (i) & (ii) are the front and back partitions of
garment mesh, while columns (a)& (b) are the angle stretch-
ing and area stretching respectively. We can infer that our
method is on-par with other methods in terms of minimiz-
ing the angle distortion while performs superior in case of
minimizing the area deformation.

4. Discussion
4.1. Ablation Study

We perform ablation study on the choice of architecture
to obtain the semantic segmentation of the reconstructed
mesh. In first case, inspired by REEF [21], we use im-
plicit learning based method to learn the semantic informa-
tion in the form of semantic field. We observe that, though
this method produces reasonable results, it fails to produce
clear boundaries of segmentation. In fact, REEF [21] learns
a separate boundary field to remedy this, however this re-
quires additional annotated boundary ground truth data. We
show that our segmentation network with DiffusionNet ar-
chitecture produces far superior result and report the mIOU
and mACC in Table 1. We provide further ablative study
on neural parameterization loss functions as well as effect
of global shape embeddings in the supplementary material.

4.2. Limitations & Future Work

Extrinsic camera calibrations need to be known for
multi-view implicit reconstruction. This restricts applica-
bility to calibrated input RGB images. Additionally, all ex-
isting methods for human digitization struggle while recon-
structing fine grained geometrical details like thin threads
and fine wrinkles. The texture map mitigates this challenge
up to some extent by retaining such details in textural ap-
pearance. Similarly, small garment accessories like belts
and ties are difficult to recover separately due to their small
scale and proximity to garment surface. Another key lim-
itation of existing methods, including ours is that the digi-
tization is dependent on input illumination. Learning accu-
rate surface reflectance for accurate appearance modeling
in varying illumination will be interesting to explore as part
of future work. Future, it will be interesting to explore re-
construction of same garments across multiple images of
varying human subjects as well as body poses in different
illumination.

5. Conclusion
We propose a novel framework for the template-

free textured 3D digitization of arbitrary garments from
single/multi-view images. The key novelty of our method
is the learnable self-supervised discretization-agnostic UV
parameterization of arbitrary garment surfaces along with
automated partitioning of garments. This enables general-
ization of our framework to various garment types captured

across multiple in-the-wild internet images. We perform a
comprehensive empirical analysis on the publicly available
datasets and report superior results to existing methods for
garment extraction and as well as UV parameterization.
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[15] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexan-
der Bogomyakov. Abf++: fast and robust angle based flatten-
ing. ACM Transactions on Graphics (TOG), 24(2):311–330,
2005.



[16] Astitva Srivastava, Chandradeep Pokhariya, Sai Sagar Jinka,
and Avinash Sharma. xcloth: Extracting template-free tex-
tured 3d clothes from a monocular image. arXiv, 2022.

[17] Francis Williams, Teseo Schneider, Claudio Silva, Denis
Zorin, Joan Bruna, and Daniele Panozzo. Deep geometric
prior for surface reconstruction, 2018.

[18] Fanbo Xiang, Zexiang Xu, Miloš Hašan, Yannick Hold-
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