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Fig. 1. Photo-realistic results generated by our proposed facial de-occlusion network, targeting
complex eye motions.

Abstract. Face possesses a rich spatial structure that can provide valuable cues
to guide various face-related tasks. The eyes are considered an important socio-
visual cue for effective communication. They are an integral feature of facial ex-
pressions as they are an important aspect of interpersonal communication. How-
ever, virtual reality headsets occlude a significant portion of the face and restrict
the visibility of certain facial features, particularly the eye region. Reproducing
this region with realistic content and handling complex eye movements such as
blinks is challenging. Previous facial inpainting methods are not capable enough
to capture subtle eye movements. In view of this, we propose a working solution
to refine the reconstructions, particularly around the eye region, by leveraging
inherent eye structure. We introduce spatial supervision and a novel landmark
predictor module to regularize per-frame reconstructions obtained from an exist-
ing image-based facial de-occlusion network. Experiments verify the usefulness
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of our approach in enhancing the quality of reconstructions to capture subtle eye
movements.

Keywords: face image inpainting, landmark guided facial de-occlusion, HMD
removal, virtual reality, eye consistency

1 Introduction

Social telepresence and interaction are essential for human survival. Since globaliza-
tion, there has been a considerable increase in users interacting remotely, which has
witnessed a tremendous surge during the Covid-19 pandemic. Traditional video confer-
encing platforms such as Microsoft Teams, WhatsApp, etc., gained immense popular-
ity during the pandemic. However, they lack immersiveness and compromise realism
that impacts the user’s experience, which is undesirable. With the integration of virtual
reality in a communication platform, the current technologies have witnessed a break-
through in enhancing user experience with a sense of heightened social existence and
interaction. Faces convey vital socio-visual cues that are important for effective com-
munication. However, one of the major challenges with virtual reality, such as HMDs, is
the occlusion it cause over the face when wearing these devices. These devices occlude
almost 30-40 percent of the face, obscuring essential social cues, particularly the eye
region, which hinders the user’s experience. Several approaches have been proposed in
the literature to tackle this problem, but none of them produces photorealistic results
that could be integrated into hybrid telepresence systems.

Existing face image inpainting approaches often suffer from incoherency in gener-
ating smooth reconstructions when applied to video frames. This incoherency is highly
noticeable in the eye region, which is undesirable. It is generally visible as jittering in
eyelids in successive video frames. Specific eye movements, such as blinking, are usu-
ally involuntary act in humans that is natural and unavoidable. Thus, it is important to
retain this characteristic for effective communication. Synthesizing eyes, including iris
and eyelid reconstruction with appropriate eye gaze, have been attempted before using
3D model-based approaches. Nonetheless, they require high-quality data and incur ex-
pensive training costs. [6] and [17] are such examples of 3D models based approaches
to HMD de-occlusion. However, they work only with frontal face images and fail in
cases of extreme head-poses. Another set of works like [14], [15] use an inpainting
approach to correct and animate the eye gaze of high-resolution, unconstrained por-
trait face images. Since these methods have not been validated on videos, they fail to
generate consistent eye motions across frames.

Interestingly, one of the biggest advantages when dealing with digital face images in
computer vision is its rich spatial structure. In digital images, this structure is generally
represented in the form of 2D/3D coordinates, heatmaps, and edges and is provided as
an auxiliary input to the network. Many works in the literature have exploited these
spatial constraints for achieving better quality reconstruction in face inpainting and
generation tasks. Recently, [11] proposed image-to-face video inpainting using spatio-
temporal nested gan architecture. They used 3D residual blocks to capture inter-frame
dependencies. The authors showed that conditioning facial inpainting on landmarks
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yielded stable reconstructions. Nonetheless, it is only validated with a specific type
of circular mask that covers the eye, nose, and mouth. [12] is another face image in-
painting method that is guided using facial landmarks. Personalized facial de-occlusion
networks such as [3] have been proposed in the literature to generate plausible recon-
structions. However, they are not controllable and thus cannot handle eye movements.
Thus, we tackle this problem using an image generation/image synthesis approach ap-
plied to faces using additional information that is easily accessible using modern HMD
devices with eye-tracking capabilities.

This work aims to generate high-quality facial reconstructions in and around the
eye region with consistent eye motions in the presence of occluders such as HMDs.
Our primary focus is to handle instability during eye movements that are noticeable
mainly around the eye region. For this, we leverage the spatial property of faces, i.e.,
facial landmarks, to guide the model to synthesize the eye region with minimal arti-
facts that look realistic and plausible. Figure 1 presents high-quality and photo-realistic
results produced by our method showing the efficacy of our approach of using spatial
supervision to control complex eye motions such as eye blinks and rolling of eyeballs.

To summarize, we make the following contributions:

1. We propose a potential solution to refine the reconstructions in the eye region.
2. To achieve this, we leverage the spatial constraints such as landmarks to improve

upon consistency in the eye region by feeding eye landmarks heatmaps as an aux-
iliary input to the network along with occluded face image.

3. To further improve the fidelity of the reconstruction, we use an additional loss func-
tion to regularize the training based on the landmarks.

2 Related Work

To see what is not present in the image is one of the most exciting yet challenging tasks
in computer vision. We often refer to it as image restoration/image inpainting in the
digital domain. It has applications in medical image processing, watermark removal,
restoring old photographs, and object removal. Inpainting has been an active research
topic for many years, and several works have been proposed in the literature. Recently,
this area has seen tremendous interest in image synthesis/image completion in AR/VR.
This section will discuss the most relevant existing works in detail.

2.1 Facial De-occlusion and HMD Removal Methods

De-occluding face images in the presence of large occluders such as HMDs is highly an
ill-posed problem. Several works such as [6], [9] have been proposed in the literature to
address this issue. However, none promises to provide usable results in practice as these
have only been validated for frontal face images with rectangular masks. Since they use
an additional reference image of the person, they fail in cases of different pose variations
between occluded and reference images. Recently, [3] presented an approach to tackle
the problem of facial de-occlusion by training a person-specific model in VR settings.
It generates plausible and natural-looking reconstructions but might fail to maintain
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smooth eye movements across consecutive frames. To address this issue, we can use
extra information provided by modern HMD devices equipped with eye-tracking to
generate consistent eye motions.

2.2 Structure-guided Image Inpainting

Figuring out missing regions without any prior information is a difficult task. Many
prior works have successfully used landmarks for the task of face generation and syn-
thesis. Previous image inpainting methods, such as [5], [12] use edges, landmarks, and
other structural information as an auxiliary input to guide the reconstructions. This ex-
tra supervision has proven effective in helping the model fill the missing region with
appropriate content. However, these are image-based approaches and might not guar-
antee to generate consistent results across frames. Thus, we cannot directly use these
methods to generate smooth reconstructions, particularly in the eye region.

3 Proposed Method

3.1 The Architecture

We built upon the architecture proposed in [3] and used an attention-enabled encoder-
decoder architecture followed by a novel Landmark Heatmap Predictor (LHP ) module
that acts as a regularizer to enhance the reconstruction in and around the eye region. We
train this network in an end-to-end fashion in two stages using a dedicated loss function.
[3] is an existing facial de-occlusion network, and we consider it a baseline.
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Fig. 2. Illustration of our proposed architecture.
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Attention-based encoder-decoder: We utilize an encoder-decoder architecture with
an attention module to inpaint the missing regions of the face, particularly the eye re-
gion. The primary function of the attention module is to focus on reconstructing this
region with high-frequency details such as hair, facial accessories, and appearances. It
also helps the model to generalize to unseen and novel appearances, hairstyles, etc. The
encoder-decoder comprises ResNet and Inverted ResNet layers, with a bottleneck layer
of 99 dimensions. For Inverted ResNet, the first convolution in the ResNet block is re-
placed by a 4× 4 deconv layer. The attention module is composed of four convolution
layers: Conv(4 ∗m, 3), Conv(4 ∗m, 3), Conv(8 ∗m, 3) and Conv(2 ∗m, 3), where
m denotes the base number of filters and Conv(m, k) denotes a convolutional layer
with output number of channels m and kernel size k. Given an occluded face image as
an input Xocc, this network hallucinates the missing region in order to reconstruct the
generated unoccluded image, Xrec against the ground truth unoccluded image, Xgt.

Landmark heatmap predictor module: We employ another encoder-decoder net-
work to refine the reconstruction around the eye region. The primary aim of this net-
work is to predict the eye landmark heatmap of the reconstructed image, based on which
we can regularize the final reconstructed image using a loss function. This landmark
heatmap predictor network is composed of ResNet and Inverted ResNet layers. The
input to this network is the reconstructed image, Xrecon produced from the attention-
based encoder-decoder network. The output is a 42-channeled landmark heatmap, de-
noted by LHP (Xrec), where each channel corresponds to one of 42 eye landmarks.
Figure 2 illustrates an overview of the proposed pipeline.

3.2 Spatial Supervision using Landmarks

Per-frame predictions from traditional image-based facial de-occlusion network such as
[3] suffer from temporal discontinuity and flickering, especially in eyelids. Therefore,
to stabilize the eye movements, we leverage eye landmarks as an auxiliary input to
guide smooth reconstructions in the eyelids that are much more realistic and consistent.
This supervision helps the model preserve the structure of the eyelids. For better and
enriched representations, we prefer 2D heatmaps over 2D coordinates. Each landmark
is represented by a separate heatmap, interpreted as a grayscale image. We convolve
all heatmaps to a single-channel grayscale image which is then concatenated with the
occluded RGB input image in the channel dimension. This is further fed to the attention-
based encoder-decoder to generate plausible and stable reconstructions.

3.3 Loss Functions

The primary goal of this pipeline is to generate plausible facial inpainted reconstructions
consistent with other frames in sequence while preserving the landmark structure of the
eyes. To serve this purpose, we use the following loss functions:

The first loss function ensures that the generated reconstruction is in close proxim-
ity to the ground-truth unoccluded image. Thus, we formulate pixel-based L1 loss to
penalize reconstruction errors.

Lrec = ∥Xgt −Xrec∥1 (1)
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However, using only reconstruction loss generates blurry reconstructions. Thus we
adopt the architecture of the DCGAN discriminator [7] in the pipeline, denoted by D, to
compute the adversarial loss that forces the encoder-decoder to reconstruct high-fidelity
outputs by sharpening the blurred images.

Ladv = log(D(Xgt)) + log(1−D(Xrec)) (2)

To further stabilize the adversarial training, we use SSIM based structural similarity
loss, as defined in [1], that helps to improve the alignment of high-frequency image
elements.

Lssim = SSIM(Xrec, Xgt) (3)

In order to emphasize the quality of reconstruction in the masked region, i.e., invalid
pixels, we use a mask-based loss function. Here, we use the binary mask image as ad-
ditional supervision to the network and input image while training. This helps mitigate
the blinking artifacts around the eye region for stable reconstructions.

Lmask = ∥Imask ⊙Xgt − Imask ⊙Xrec∥1 (4)

where, Imask refers to single channel binary mask image where white pixels (1) corre-
spond to occluded region and black pixels (0) correspond to the remaining unoccluded
region and ⊙ is element-wise multiplication.

Apart from providing a landmark heatmap along with occluded input, we also reg-
ularize the reconstructions based on landmarks using a loss function. To prevent ir-
regularities in the eye region and preserve eyelid shape, we utilize landmark heatmap
prediction loss that regularizes the inpainted reconstructions based on predicted eye
landmark heatmaps, LHP (Xrec) and ground-truth eye landmark heatmaps, H . Here,
for each landmark li ∈ R2, Hi consists of a 2D normal distribution centered at li and a
standard deviation of σ.

Llhm = ∥H − LHP (Xrec)∥2 (5)

Thus, the final training objective loss function can be written as,

Lfinal = λrec∗Lrec+λadv∗Ladv+λssim∗Lssim+λmask∗Lmask+λlhm∗Llhm (6)

where, λrec, λadv, λssim, λmask and λlhm are the corresponding weight parameters
for each loss term.

4 Experiments and Results

4.1 Dataset and Training Settings

Dataset preparation: We train the network on different face video sequences for mul-
tiple identities. We train a person-specific model for every identity on 4-5 sequences
captured in various appearances, including apparel, hairstyle, facial accessories, and
different head poses. Videos are recorded at a resolution of 1280 x 720 at 30 fps using
a regular smart-phone and then cropped to 256 x 256 for training. Note that there is
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no overlap between the training and test set. To test the ability of our model to gener-
alize to novel appearances, we validate it with completely unseen videos that are not
seen during the training process. The dataset is available here. For the provision of spa-
tial supervision, we use Mediapipe [2] to detect and localize 42 landmarks around the
eye, including iris landmarks. As discussed in Section 3.2, we create a heatmap for ev-
ery landmark coordinate. Since we extract pseudo landmarks directly from unoccluded
ground truth that is inherently spatially aligned with the occluded face, we directly ap-
pend landmark heatmaps with the occluded input image without any further processing.

Inference with real occlusion: The eye information might not be directly accessible
during inference when wearing regular virtual reality headsets. Fortunately, modern de-
vices allow eye tracking using IR cameras mounted inside headsets. We can extract this
information from eye images captured using these cameras. Unfortunately, the images
captured by these cameras are not aligned with the face image. Hence, we need to cali-
brate both the eye and face camera as proposed in [8], [17] to align the eye images with
the face image coordinate system. However, due to the unavailability of these headsets,
we opt for pseudo landmarks extracted from ground-truth images to provide supervi-
sion to the model. As discussed, we extract these landmarks using the Mediapipe [2]
face landmark detector. It is to be noted that these landmarks do not adhere well to an
anatomically defined point across every video frame and thus have local noise in them
generated due to the inaccuracy of the facial landmark detector.

Training strategy: We follow a similar two-stage training strategy proposed in [3]. In
the first stage, we only train the encoder-decoder network without an attention mod-
ule on unoccluded images along with their corresponding eye landmark images of the
person using the first three losses aforementioned in Section 3.3, each added incre-
mentally after 400, 100, and 300 epochs, respectively. In the second stage, we fine-
tune the same encoder-decoder with the attention module and the landmark prediction
module on occluded images of the same person and their corresponding eye landmark
images using two additional loss functions. We use the same three losses as the first
stage. Apart from this, we also use a landmark heatmap prediction loss to regular-
ize the reconstructions generated from the attention-based encoder-decoder network
and a mask-based loss to minimize reconstruction errors in the masked region. We use
λrec = 1, λadv = 0.25, λssim = 60, λlhm = 1 and λmask = 1.

4.2 Results

In this section, we present the results of our method and discuss its superiority over
existing approaches. We first compare the visual quality of the reconstruction generated
by our method with popular state-of-the-art inpainting methods, followed by a quanti-
tative analysis using standard evaluation metrics. To further validate the efficacy of our
approach, we also report an ablation study conducted in the scope of this work.

Qualitative comparison: For visual comparisons, we evaluate our method against var-
ious image inpainting methods across 20 subjects. Results highlighted in Figure 4, 6, 7

https://3dcomputervision.github.io/publications/facial_deocclusion.html
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show that the reconstructions generated using our method are visually pleasing and con-
sistent across frames compared to other inpainting methods. Reconstructions generated
using our approach, as shown in row (C) of Figure 4 show the significance of landmark
supervision and regularization loss in capturing eye movements such as blinks. How-
ever, predictions using other approaches are often incoherent across frames. As visible
in row (F), DeepFillv2 [13] fails poorly to generate plausible reconstruction in the eye
region. LaFIn [12] and Edge-Connect [5] generate superior reconstructions compared
to DeepFillv2, however, it cannot handle eye movements. Besides, there is a notice-
able discrepancy in the left and right eyes that looks unnatural. Baseline [3] produces
naturally-looking reconstructions but cannot handle eye blinks. For better comparison,
refer to the supplementary video. In Figure 3, we also show the reconstruction error
(l2 error) between the results generated by different image inpainting methods and the
ground truth for better justification. Please refer to the supplemental video.

Ground-truth Ours DeepFillv2 Edge-Connect LaFIn

Fig. 3. Qualitative result that showing the reconstruction error (l2 error) between the results gen-
erated by different image inpainting methods and the ground truth.

https://3dcomputervision.github.io/publications/facial_deocclusion.html
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Fig. 4. Qualitative comparison with SOTA image inpainting methods. From row (A-G) are Oc-
cluded (input), Original (ground-truth), Ours, Baseline [3], Edge-connect [5], DeepFillv2 [13]
and LaFIn [12] respectively. From left to right are consecutive frames of unseen testing video.
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Quantitative comparison: To quantify the quality of reconstructions, we use standard
image quality metrics such as SSIM [10], PSNR [4], and LPIPS [16]. For SSIM and
PSNR, a higher value indicates better reconstruction quality and vice-versa. Similarly,
for LPIPS, a lower value indicates better perceptual quality and vice-versa. Table 1
shows the quantitative comparison of our proposed method with other state-of-the-art
face inpainting methods. As reported, our method (in bold) performs better in all eval-
uation metrics than other methods such as Edge-connect [5], DeepFillv2 [13], Baseline
[3] and LaFIn [12].

Method SSIM↑ PSNR↑ LPIPS↓
LaFIn [12] 0.914 23.693 0.0601
EdgeConnect [5] 0.908 23.10 0.0689
DeepFillv2 [13] 0.845 19.693 0.117
Baseline[3] 0.918 29.025 0.042
Ours 0.949 31.417 0.0235

Table 1. Quantitative comparision of our method with other state-of-the-art image inpainting
methods.

5 Ablation Studies

We perform several ablation studies to understand the various aspects of our model.
We first analyze the effect of providing spatial supervision to the model in enhancing
reconstruction quality, both qualitatively and quantitatively. As depicted in Figure 5 and
8, our model with landmarks produces aesthetically pleasing eyes and preserves eyelid
shape in contrast to the one without landmarks supervision. It is due to the guidance
provided by the landmarks that helps the model enforce consistency in eye movements,
including the opening and closing of eyes. However, it is to be noted that this does
not ensure eye movements are temporally coherent. Secondly, we show the effect of
using a regularizing loss function based on landmarks heatmap to penalize the errors
caused by the model. Table 2 reports the positive impact of using eye landmarks and
landmark-based loss function in guiding the reconstruction in the eye region.

Method SSIM↑ PSNR↑ LPIPS↓
Baseline[3] 0.918 29.025 0.042
Ours (with LHM) 0.926 29.272 0.0418
Ours (with LHM + Llhm) 0.949 31.417 0.0235

Table 2. Ablation study showing the significance of using landmark supervision on the recon-
struction quality. Here, LHM is the auxiliary landmark heatmap provided along with the input
image and Llhm is the regularizing loss function.
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Fig. 5. Testing results showing the effect of using landmarks as auxillary input to the network.
From row (1-4) are occluded (input), original (ground-truth), results with and without landmarks
respectively. From left to right is temporal continuously images of original 30fps videos.

6 Conclusion

We present this work as an enhancement in existing facial de-occlusion networks by
explicitly focusing on improving eye synthesis. We show that providing landmark in-
formation during the inpainting process can yield superior quality and photorealistic
reconstructions, including the eye region. We discuss how this information can be re-
trieved: 1) by extracting pseudo landmarks from ground-truth images and 2) using mod-
ern HMD devices capable of tracking eye movements. To further enhance the generated
output, we propose a landmark-based loss function that act as a regularizing term to
improve reconstruction quality and helps capture subtle eye movements such as eye
blinks. We conducted qualitative and quantitative analysis and reported superior results
with other SOTA inpainting methods to justify the usefulness of our approach.
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(B)

(A)

(C)

(D)

(E)

(F)

(G)

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Fig. 6. Qualitative comparison with SOTA image inpainting methods. From row (A-G) are Oc-
cluded (input), Original (ground-truth), Ours, Baseline [3], Edge-connect [5], DeepFillv2 [13]
and LaFIn [12] respectively. From left to right are consecutive frames of unseen testing video.
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Fig. 7. Qualitative comparison with SOTA image inpainting methods. From row (A-G) are Oc-
cluded (input), Original (ground-truth), Ours, Baseline [3], Edge-connect [5], DeepFillv2 [13]
and LaFIn [12] respectively. From left to right are consecutive frames of unseen testing video.
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Fig. 8. Testing results showing the effect of using landmarks as auxillary input to the network.
From row (1-4) are occluded (input), original (ground-truth), results with and without landmarks
respectively. From left to right is temporal continuously images of original 30fps videos.
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