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Figure 1: Rendition of a terrain generated using the proposed method.

ABSTRACT

This paper proposes a novel adaptive multi-resolution framework
for generating terrains. Our framework combines diffusion-based
generative network and novel frequency separated terrain features
for terrain patch generation. Additionally, we propose to leverage
learnable terrain super-resolution for enhancing generated terrain
patch followed by novel kernel-based blending of these patches
using Perlin noise to generate infinite terrain with realistic terrain
features. We provide a comprehensive quantitative and qualitative
evaluation of the proposed framework.
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1 INTRODUCTION

Terrain generation is a classical use-case in the computer graph-
ics community (dates back to four decades [7]) largely driven by
gaming and simulation applications. Procedural and artist-driven
terrain generation are two popular lines of thought explored in the
existing literature [33]. In procedural terrain generation, we aim to
algorithmically generate height maps of landmasses such as moun-
tains or deserts. Many domains such as digital gaming, animated
movies and architectural models adopt this approach, e.g., popu-
lar "open-world" games such as Minecraft and No Man’s Sky need
to render infinitely large terrains and hence employ procedural
generation techniques. Furthermore, due to the large variation in
hardware capability at the gamer’s end, it is desired to have a so-
lution with the ability to adaptively generated terrains of varying
quality ( i.e., multi-resolution terrains).

Traditionally, terrain generation has been attempted using func-
tions like Perlin [31] or Simplex[11] noise. This is to date a popular
technique in digital gaming. However, these techniques provide
minimal control largely restricted to choosing noise parameters and
hence lack real-world terrain features. The real-world terrains are


https://doi.org/10.1145/3571600.3571657
https://doi.org/10.1145/3571600.3571657

ICVGIP’22, December 8-10, 2022, Gandhinagar, India

captured traditionally using microwave imaging (typically sensor
over satellites) or recently using LiIDAR-based sensing [25]. These
digitized terrains are thus represented and stored as Digitial Eleva-
tion Models (DEMs) where a raster grid stores per pixel elevation
of the discretized terrain.

With the advent of deep learning technology, many generative
modelling approaches such as Generative Adversarial Networks
(GAN) [9] and Variational Auto Encoders (VAE) [18] have been
employed for the task of terrain generation [10, 36] by learning
over the real world DEM data. Their key advantage over traditional
noise modelling techniques is that they enable learning from a large
set of publicly available realistic terrain data [8, 15]. This brings
realism to generated terrains. Nevertheless, their usage has been
largely limited to producing limited size tiles/patch of terrain at
a single resolution [27], which greatly limits their applications to
open-world games and simulations where large-scale continuous
infinite terrain generation is desired. Another related use-case of
terrain enhancement/super-resolution is also well attempted with
deep learning framework [20]. In regard to deep generative mod-
els, recently diffusion-based technique is getting popular where an
iterative Markov modelling is proposed for learning data distribu-
tion and employed for the task of generating realistic images. The
diffusion-based formalism is claimed to outperform other existing
generative techniques [5].

In this paper, we propose a framework to generate infinite ter-
rains at multiple resolutions adaptively. Our framework combines
diffusion-based generative network [5, 28] and novel frequency sep-
arated terrain features along with learnable terrain super-resolution
equipped enhancement followed by novel Kernel-based Blending
that uses Perlin noise [31] to generate infinite terrain with realistic
terrain features. More specifically, our framework consists of train-
ing and inference phases. As part of the training phase, we propose
to separate multiple spatial frequencies of terrain features extracted
from real-world data and independently employ diffusion model
based learning of respective data distributions (at associated spatial
frequency). Additionally, we also learn a terrain super-resolution
model over the same dataset in this phase. In the inference phase,
we propose to adaptively sample learnt data distribution from diffu-
sion models (at respective spatial frequencies) and perform fusion
to obtain a new terrain patch. Subsequently, we enhance this patch
using the trained super-resolution model to enhance realistic ter-
rain features into the patch. Finally, we combine multiple patches
using novel kernel blending where Perlin noise help achieve seam-
less blending near patch boundaries enabling the generation of
large and continuous realistic terrains. Figure 1 shows a realistic
terrain generated with the proposed framework. We provide a com-
prehensive quantitative and qualitative evaluation. The code/learnt
models are available at our website !.

The key contributions of our work are: 1) A novel adaptive
and multi-resolution framework for generating realistic terrains.
2) Diffusion-based generative modelling of terrains. 3) Generating
infinitely large terrain in a learning-based framework. 4) State-of-
the-art terrain super-resolution technique.

!https://3dcomputervision.github.io/publications/inf_terrain_generation.html
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Figure 2: Illustration of fractal Perlin Noise along with its
octaves. For this rendition, f, = 2.0,a, = 0.5 and N, = 3.

2 BACKGROUND AND RELATED WORK

Terrain generation can broadly be categorised into traditional and
learning based approaches. We can further subdivide traditional
approaches into noise-based, example-based and simulation-based
techniques. On the other hand, we divide learning based methods
based on the applications and techniques they use.

Noise based approaches are among the most commonly used
methods due to their simplicity. Noise based functions are mainly
of two types, value noise in which we interpolate between random
values at fixed grid points and gradient noise in which we interpo-
late between random gradients in fixed grid points. Examples of
noise based approaches are Perlin Noise [31, 32], Simplex Noise [11]
or diamond square algorithm [6]. Perlin noise is a type of gradient
noise and has been used extensively to generate terrains [21, 29]
due to its efficiency and simplicity. Perlin noise uses random gra-
dient values at grid points. For any point within the square grid,
we calculate the dot product of the directional vector from the grid
corner to the point with the random gradient vector on the grid.
We then smoothly interpolate between the dot products to deter-
mine the elevation value at the given point. Let us denote Perlin
noise by noise(x, y), such that we get an elevation value at sampled
X,y € R%. We use fractional Brownian motion (fBm) [23, 30] to fuse
multiple frequencies of Perlin noise. Let us denote the frequency
of fBm for Perlin noise by f;, € [1, ), persistence a,, € [0, 1] and
the number of octaves as N, € [1, o). Then fractal Perlin noise is
given by,

&

1

a, X noise(fjf X x,foi X y) (1)

I
—

Figure 2 renders a terrain corresponding to Equation 1. Figure 2
(b), (c) and (d) correspond to the sum terms for i=1,2 and 3 called
octaves 01, 02 and 03 of Perlin noise respectively whereas Figure 2
(a) is the fBm summation of those terms as given by Equation 1. This
equation relies on the fractal property of terrains, that is terrains
exist as self-repeating structures at different scales and frequencies.
This property will be exploited in our framework.

Simulation based methods consist of erosion tools [3, 4, 26],
such that given a terrain, an erosion process is simulated over it to
produce natural terrain patterns. Whereas example based methods
use examples or sketches of terrains to generate terrains [13, 37].

Learning based methods for terrain generation were primarily
dominated by GAN [9] and VAE [18] based methods. GANs were
introduced as a generative method with two networks, a generator
and a discriminator trained together to optimize for a saddle point
solving a minimax optimization problem to learn a distribution
p(x). In general, GANSs are hard to train due to their formulation.
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Figure 3: Overview of the proposed framework consisting of the training and inference phases.

Conditional GANs [24] are an extension of GAN which learn a
conditional distribution p(x|c). Pip2Pix [16] is a conditional GAN
image to image network which have been employed by [10] to
convert user inputs such as ridges and valley into terrain. Similarly,
[36] used an adversarial loss to amplify terrain with style compo-
nents. VAE on the other hand optimize for maximizing an evidence
lower bound and in general have lower quality but higher diversity
than GAN. VAEs learn a latent space which can be manipulated
meaningfully and can be used for editing. [27] employed this to
propose a framework consisting of a VAE and a GAN for terrain
editing.

The diffusion models are another class of generative models
introduced in the seminal work by [34]. These models were further
improved by [5, 14, 28] until recently when they eventually beat
GANs on image synthesis task. Diffusion models work by first
adding noise to a data sample and then learn to denoise it. If we
keep adding noise following some constraints, we end up with an
isotropic Gaussian distribution after T steps of adding the noise.
Subsequently, when we want to sample a data point from a desired
distribution, we can sample a Gaussian and denoise it to produce
the sample. Diffusion models have not yet been used for generating
terrains.

Terrain super-resolution is the process of converting a low reso-
lution terrain to a high resolution terrain. This problem was first
tackled using a deep learning based solution by [1]. They employed
an ortho-photo and a depth-map together to super-resolve the depth
map using a multi-scale approach. Their baseline was outperformed
by [19] using attention feedback networks. [20] attempted the same
task with a depth-map alone using feedback neural networks and
achieved on-par performance on some regions compared to [1].

3 METHOD
3.1 Overview & Notations

Our dataset consists of terrain represented as a Digital Elevation
Model (DEM), which is a grid raster form of storing the terrain data.
Each DEM is a function f : R? — R representing the height/elevation
at any given point in the raster-grid. The DEM is usually large and
hence divided into a set of smaller patches for easy processing.

Figure 3 gives an overview of the proposed framework divided
into two phases. In the training phase, we assume the availability
of DEM dataset where we divide large DEMs into multiple smaller
uniform size patches p; and the set of all patches obtained from
the dataset is represented as . Subsequently, we separate each
patch p; € P into N of its constituent spatial frequencies 1y, . .. un;,
using Fourier transform such that y;, € ©;Vi. Hence, ©; is the set
containing all patches of frequency j and N is a hyper-parameter
of the framework. Furthermore, we resize the patches in ©; ...On
such that the size of the patches increases from 1 to N. Finally,
we train N separate diffusion models D; ... Dy with ©1...0n,
respectively. We also train a separate super-resolution model S on
P to enhance generated patches.

As part of the inference phase, we adaptively sample patches
from the first k diffusion models, where 0 < k < N. We can in-
crease k adaptively upon the need for more details in the terrain,
thereby providing a multi-resolution adaptive output. The sam-
pled set of patches y;i e Ill,ci are further employed with bicubic
up-sampling to be brought to the same size and fused together
with fractional Brownian motion (fBm) [23] to generate patch p;.
The generated patch is further enhanced by employing the trained
super-resolution model (S) to yield patch plfSR. Finally, for a smooth
transition between the generated patches p;SR, péSR, ..., We com-
bine fractal Perlin noise with the generated patches using a derived
kernel G. The detailed description of relevant modules in our frame-
work is presented below.

3.2 Frequency Separation

We separate each patch p; € P into its N constituent frequen-
cies 1, ... N, using Discrete Fourier Transform (DFT) as show in
Figure 4. DFT is an image processing method used to convert an
image from spatial to frequency domain. We specifically use the
Fast Fourier Transform (FFT) algorithm [2] # for our tasks. Given
an input patch p; € P of size M X M in the spatial domain, we con-
vert it into the frequency domain F of the same size as F = F (p;)
given by,
M-1M-1 oy
Fuo)= )7 )7 pily)e PrU @

x=0 y=0
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Figure 4: Separation of a patch into its constituent frequencies. The patch dimension is 256 X 256 and N = 3. The Gaussian
kernel is of variance 8 and the Gaussians in the DoG kernel are of the variance are given in their parameters.
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Figure 5: (a) Patch (b) Corresponding log amplitude of the
DFT of the patch.

Figure 5 illustrates the patch p; and the corresponding log am-
plitude of its DFT. After we obtain the frequency domain repre-
sentation F of the patch p;, we apply a set of kernels to separate
its frequencies at varying levels. We use a Gaussian kernel for the
lowest frequency and Difference of Gaussian (DoG) kernels for
higher frequencies as illustrated in Figure 4. These kernels mask F
as Gaussian o F or DoG o F where o represents the Hadamard prod-
uct which aids in separation of the frequencies. After applying the
kernels, we convert the resultant patches back to the spatial domain
using Inverse FFT #~! giving us the constituent patches at succes-
sively increasing spatial frequencies yi1, . .. ;. Separating a patch
into its constituent spatial frequencies will aid in providing a multi-
resolution and adaptive framework for producing terrains. One
can observe that the extracted spatial frequency patches (shown in
Figure 4) are conceptually very similar to the octaves depicted in
Figure 2.

3.3 Diffusion Models

Diffusion models generate samples from a distribution by learning
successive denoising starting from from a noisy sample at timestep
T. Particularly, each sample in the order ,u}“, y}r_l, e ,,u}, ,ug is
closer to the desired distribution, where the superscript gives the
timestep of the diffusion process. We adapt our model from [5]
which consists of a forward process q(y}fl yj_l) which adds noise

to the given sample and a reverse process pg (y§_1 | ,u§) which learn

to denoise the sample. The reverse process is parameterized by 6
which is learnt. For a given terrain frequency distribution sample

;12 ~ ©j, we define the forward process as,

k k
a1 = [ [aGi1e™) = [ [NGT=Bag L) @)
t=1 t=1

Here f is increased as per a linear or cosine schedule in our
experiments. Since we iteratively scale and sample from a Nor-
mal distribution as illustrated in Equation 3, we get an isotropic
Gaussian sample at timestep T. We define the reverse process as:,

Po(p;~ i) = N (Mg (5, 1), Zg (1], 1)) )

At each time step, we predict the mean and covariance of the
previous timestep using the parameterized functions My and %y
parameterized by 6. We sample from a Normal distribution with the
predicted mean and covariance iteratively until timestep 0, which
gives us a sample from the desired terrain frequency distribution.
We specifically predict the noise added, optimizing for the Ly norm
of the true and predicted noise E[||e — g (/15, 3] |§], where € is the
true added noise and €y is a parameterized function predicting the
noise added. We use a UNet architecture.

We train N diffusion models D;, i € [1, N] with ©;. Each succes-
sive model is trained on a larger patch size, that is, the size of the
patch produced by the model D; o i. In particular, we keep N =3
in our experiments with the patch sizes varying as 64 X 64, 128 X 128
and 256 X 256 for D1, D, and Ds respectively. Decreasing the patch
size with decreasing frequency aids in adaptive sampling discussed
in the sections to follow. We use diffusion models for learning the
distribution of terrains because of their superior quality in terrain
generation compared to other methods, as discussed in the sec-
tion 4. An illustration of the process of terrain patch generation
with diffusion model is provided in Figure 6.
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Figure 6: The working of a diffusion model for terrains. t represents the timestep of the diffusion process. Here we adopt linear

schedule with f varying between 0.001 and 0.02.
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Figure 7: Architectural diagram of the proposed terrain super-resolution model TRCAN.

3.4 Terrain Super-Resolution

Modelling: We propose to adapt RCAN [35] model initially pro-
posed for image super-resolution for the task of terrain enhance-
ment. Henceforth, we will refer to this network as Terrain Resid-
ual Channel Attention Network (TRCAN). Figure 7 provides an
overview of the architecture of TRCAN. This network uses a resid-
ual in residual structure which helps in making very deep networks
avoiding vanishing gradients and increasing the receptive field. The
input to TRCAN model while training is a low-resolution patch
pLR and the output is the super-resolved patch psg corresponding
to the ground truth high-resolution patch pgg.

The key difference between our method compared with RCAN [35]
is the head and tail convolutional blocks in the network. Whereas
RCAN proposes to pass the image in its low-resolution dimension
through the network and upsample towards the end, we cannot
employ the same for the task of terrain super-resolution. This dif-
ference primarily arises due to the difference in the ways of the
processing of the datasets where terrains need the input and out-
put to be of the same dimensions to find low-resolution and high-
resolution patch correspondences. We subsequently modify the
head and the tail convolutional blocks to account for the same.

We use Adam optimizer [17] along with L; loss to optimize the
parameters of the network given by,

L1(0) = llpur = psrll} ©)

Post-Processing: As compared to regular RGB images, DEMs
are often large in resolutions, for example, Cimavertana region
in our dataset is a 5250 X 3900 raster. Thus, the large DEMs are
split into smaller patches for easy processing with typical sizes

lying in the range 256 X 256. In the simplest form, all the patches
are split without any overlap, enhanced independently and put
together side by side without overlap to obtain the final super-
resolved DEM. [20] observed that this was not the optimal way
to obtain the final DEM and proposed to split the patches with
some overlap along the edges (25% in their case), super-resolve and
then average them along the edges. We observed that the scope of
improving the results is not limited to just the patch boundaries
but throughout the patch and therefore propose a new stride-based
post-processing technique. We extract patches from the larger DEM
at strides of s, which is a hyperparameter. We super-resolve all the
patches extracted at stride s and pool their values at the overlapping
regions to obtain the final result. This acts as an implicit ensemble
thereby improving the RMSE of the super-resolved DEM. This can
be seen as a generalization of the method proposed by [20], with
a 25% overlap corresponding to a stride of 192 for a 256 X 256 tile.
We call this model TRCAN+.

3.5 Adaptive Sampling, Fusion & Enhancement

We aim to produce a multi-resolution and adaptive framework to
generate terrain. A naive approach for generating terrains would be
to learn the DEM patch # distribution rather than the distributions
of its constituent frequencies ®;. In this approach, we would need
to learn the patches at a constant resolution, and generate those
patches at the same resolution regardless of any constraints. This
might be wasteful of resources because high levels of detail for
far away terrains may be unnecessary in a real-time setting. For
example, in a first person view, we would like terrains close by to
be of higher quality than areas of terrains far away. We would also
like the details on the terrain to increase as we move closer begging
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a multi-resolution solution. Similarly, we would want an algorithm
that could function on computational constraints, that is work on
PCs with lower specifications too. Therefore, we desire a solution
which is adaptive, multi-resolution and realistic.

Firstly, we achieve adaptive sampling by varying the number of
models we sample for generating a patch. Particularly, we sample
k < N diffusion models to produce 4] ... i} . For example, in a first
person view, we would set k high for a nearby point and keep it low
for a far away point interpreting it as a technique for Continuous
Levels of Detail (CLOD) in terrains. Another use case would be to
set an upper-limit for k to respect computational constraints, with k
set to 0 for the slowest PCs corresponding to just Perlin Noise which
has efficient implementations available. Since for lower frequencies,
the models are learnt on lower resolutions, sampling them would be
faster. Once we obtain ] ... ,u;c, we perform bi-cubic interpolation
to bring all of the generated frequency separated patches to the
same resolution and then fuse them using fBm, a method which is
inspired by Perlin noise. Let the persistence of generated patches be
denoted by a,, € [0, 1] which scales down higher frequency details,
the fBm fusion equation would be given by,

k

pl= DL a (6)

i=l,,u;~@,'

This is possible only because we have samples at different fre-
quencies and would not be possible if we used techniques incorpo-
rating mipmapping. We can compare this equation with Equation 1.
Note that Equation 6 can be computed in an online manner, that
is, as we desire more details, we only have to sample models D;
such that i > k and update the previously produced patch. Equa-
tion 6 would thereby enable us to produce multi-resolution terrain
patches p! as discussed in subsection 4.2

We further deal with step-size resizing in our trained diffusion
models to improve our framework adaptivity. Given that we have
diffusion models trained on T steps, while sampling we can reduce
the number of steps to K < T [28]. For this, K linearly spaced
integers between 1 and T can be used as the input to the diffu-
sion model. This improves the sampling speed of our model by
decreasing the time to sample linearly with K. Alas, this comes
at the cost of quality. This adds as another use-case for adaptive
terrain sampling, which can adjust to computation constraints. An
illustration and discussion on this is provided in subsection 4.2.

Finally, we use our enhancement module to add details to the
generated terrain patch p’. Specifically, the super-resolution model
S takes the unrefined patch p” and adds details to produce pgp =

S(p’).

3.6 Kernel Blending

One of the last challenges in producing infinitely large terrains is
a smooth transition among the patches pg R, Ve generated in the
previous steps. Simply placing the tiles produced in a grid gives
rise to discontinuities along the patch boundary, as illustrated in
Figure 8 (a) highlighted in red. This is because the terrain tiles
are produced independently and their edges do not line up with
each other. On the other hand, Perlin noise function is inherently

A.Jain et al.

Figure 8: (a) Tiled terrain patches (b) Fractal Perlin noise (c)
Kernel blended terrain.

continuous in R? because it smoothly interpolates between pseudo-
random gradients at fixed intervals at tile vertices. Whereas, as we
can observe in Figure 8 (b), Perlin noise does not possess real terrain
features and hence its divergence from the distribution of terrain is
high. We propose to take the best of both, a learnt distribution from
diffusion models (Figure 8 (a)) and the infinite continuity of Perlin
noise (Figure 8 (b)) by blending them using a kernel to produce
infinite terrains with learnt details as illustrated in Figure 8 (c). The
difference in details are highlighted in comparison of (b) and (c),
with (b) showing a much smoother surface lacking real world detail.
We do not observe boundary artifacts in (c) which were present in
(a).

Let g be a 1-D kernel and ¢ € [0, 1] represent the domain of the
kernel such that g(t) € [0, 1] is the range. We want the kernel to
satisfy conditions (1) ¢’(t = 0) = 0 and (2) ¢’(¢t = 1) = 0 for the
continuity along the end-points given that we will tile this kernel,
(3) g(t = 0) = 0and (4) g(t = 1) = 0 to make sure that fractal
Perlin noise is dominant at the tile edges to provide continuity and
(5) g(t = %) = 1 such that the sampled terrain is dominant where
continuity is not a concern. We require an order four polynomial
to satisfy the five conditions. Let g(t) = Z?:o ajt' be the template
polynomial. Upon simplifying with constraints (1) to (5), we get
the linear system of equations,

1 1 1][as 0
4 3 2|lasl=1]0 (7)
1 2 4|a 16

The solution of this gives us the kernel g(t) = 16t* — 32t? +
1612, the corresponding graph is plotted in Figure 9. This kernel
resembles a Gaussian but upon experiments with a Gaussian kernel,
we observed edge artifacts due to the tails of Gaussian being non-
zero. We take the outer product of the kernel with itself which gives
us the 2-D kernel G = g ® g. We blend p, and fractal Perlin noise
fpn for the desired domain as,

Gopip+A(1-G)ofpn (3)

where o denotes the Hadamard product and A is a scaling hyper-
parameter that we best found to work in the range [0.75, 1]. An
example of the resulting terrain is illustrated in Figure 8 (c), where
Figure 8 (a) corresponds to p¢, and Figure 8 (b) corresponds to fpn.
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4 EXPERIMENTS AND RESULTS
4.1 Dataset

We use the same dataset as [1, 20, 27] for fair comparison with
state-of-the-art terrain generation and terrain super-resolution.
This dataset is publicly available and consists of high resolution
DEMs of 2m spatial resolution from the regions of Pyrenees [15] and
Tyrol [8], which cover an area of 643 km? and 304 km? respectively.
We divide the DEMs into tiles of 256 X 256 for processing in the
pipeline.

4.2 Diffusion Model, Adaptive Sampling &
Fusion

Implementation Details: We train our diffusion models with
number of steps K = 1000. We use a batch size of 16 along with a
cosine f scheduler. We learn the covariance and keep the learning
rate fixed at 10~* optimizing with the Adam optimizer [17]. We train
for 216 iterations on Nvidia GeForce RTX 2080 Ti. We keep these
parameters fixed for all the frequencies. We compare our proposed
diffusion based model to a set of baselines. The first baseline is the
improved Perlin Noise [32] which we implemented ourselves. We
set the number of octaves to 3. The second baseline is a GAN model
[9] for which we use the implementation of deep convolutional
GAN provided by [22]. Our batch size was set to 64, learning rate
2 x 104, latent dimension 100, trained for 200 epochs on Nvidia
GeForce RTX 2080 Ti and optimized using the Adam optimizer [17].
Our final baseline is a model which is composed of a VAE and a
GAN [27]. This is a conditional model meant for terrain generation
and manipulation. We use the pre-trained weights provided by the
authors to generate samples given the test set. This model was
trained on the same dataset as ours. For fair comparison, we set
N =1 for diffusion models.

Results: We generate samples from various baseline models
(explained before) and compare it to the ground truth dataset using
the FID metric [12]. The results given in Table 1 show that diffusion
models outperform other methods in terrain generation.

In terms of qualitative understanding of adaptive terrain gen-
eration, Figure 11 displays terrains rendered at varying values of
diffusion sampling steps (K) in which we can observe a slight drop
in the finer details as we decrease K. Nevertheless, this decrease
in quality can be acceptable as it yields faster generation, with
K = 1000 taking 35s and K = 10 taking 5s on an Intel Xeon CPU as
sampling time reduces linearly with K in diffusion models. Since
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Table 1: Comparison of Fractal Perlin [32], GAN [22],
VAE+GAN [27] and the proposed diffusion based modeling
using the FID | metric for terrain generation.

GAN VAE+GAN Diffusion
204.365

Fractal Perlin

FID | 335.851

119.124 54.444

(a) (b) ()

Figure 10: An illustration our fusion strategy (following Equa-
tion 6) with a;, = 0.5. (a), (b) and (c) correspond to k = 1,2 and
3.

& &

K = 1000 K =500

Figure 11: Terrains sampled with diffusion model by varying
the number of sampling steps K for N = 1.

terrain data is much more unstructured compared to natural im-
ages or facial data, slight deviation from the actual distribution are
not caught visually, hence reducing K to improve sampling speed
would not be as detrimental as it would be with other domains.

In regard to qualitative evaluation of fusion multiple patches
generated by respective learnt diffusion models for different spatial
frequencies is shown in Figure 10, where we can observe the finer
details increase with an increase in k (following Equation 6).

4.3 Super-Resolution model

Implementation Details: The architectural diagram for our pro-
posed method is given in Figure 7, corresponding to which we
found the values of I = 8 and J = 16 to work best for us. We used
average pooling in our pooling layer in the process to get the at-
tention weights. We used Adam optimizer [17] with a learning rate
(LR) of 10~ and a step LR scheduler reducing the LR by 5% every
2 epochs. We train for 256 epochs on Nvidia GeForce RTX 2080 Ti.
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Table 2: Comparison of Bicubic Upsampling, FCND [1], DSRFB/DSRFO [20] and our proposed TRCAN/TRCAN+ using RMSE (in

meter, |) / PSNR (in dB, T) for 8x terrain super-resolution.

Region Bicubic FCND DSRFB DSRFO TRCAN TRCAN+
Bassiero 1.406/60.5 1.146/62.261 1.091/62.687 1.083/62.752 1.086/62.728 1.077/62.807
Forcanada 1.632/58.6  1.326/60.383 1.270/60.761 1.259/60.837 1.260/60.828 1.248/60.909
Durrenstein ~ 1.445/59.5 0.957/63.076 0.884/63.766 0.868/63.924 0.869/63.915 0.847/64.138

Monte Magro 0.917/67.2  0.632/70.461 0.589/71.081 0.581/71.196 0.584/71.144 0.574/71.293

Figure 12: Terrain enhancement where (a) is enhanced to (b).

Results:Figure 12 illustrate qualitative result of terrain enhance-
ment, where we can observe that (a) is the generated terrain (from
fusion of multi spatial frequency patches) is smoothed out whereas
fine details like sharper edges are present in enhanced terrain ob-
tained by employing terrain super-resolution as shown in (b).

In terms of quantitative evaluation, we compare the RMSE and
PSNR of our model with bicubic upsampling and two baselines mod-
els, all of which were tested on the same dataset as ours. The first
baseline model FCND [1] proposed a multi-scale architecture with
the possibility of combination with aerial-imagery. We use their
method with just depth for fair comparison. The second baseline
model [20] proposed a feedback neural network based architecture
DSRFB along with extention with post-processing DSRFO. Table 2
compares our method with the baselines using RMSE and PSNR
and establishes a new state-of-the-art in 8x terrain super-resolution.
The results are reported for the test set. DSRFB should be compared
with TRCAN because they are tested without post-processing and
DSRFO with TRCAN+ with post-processing. TRCAN+ used a stride
of 16.

We further experiment with the effect of stride on the RMSE.
Figure 13 illustrates that there is an approximately linear relation-
ship between the two. This can be seen as an ensemble where the
variance in the output reduces with increasing number of samples,
which is inversely proportional to the stride. The RMSE has been
normalized in this plot such that the RMSE of the maximum stride
is 1.0 for each region for easy visualization.

4.4 User Study

We conduct a user study with 30 domain expert participants. We
show each participant 5 renders each of terrain generated via fractal
Perlin Noise, our method and the ground truth dataset and ask them
to rate the terrains based on realism and aesthetics out of 5. We
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Figure 13: Effect of stride on the RMSE.

report the mean and standard deviation (STD) of the scores in Ta-
ble 3. We observe the expected progression in mean and STD scores
with the highest scoring ground truth followed by our method and
then fractal Perlin noise. We can observe that Mean rating of the
generated terrains obtained with Perlin noise is significantly lower
as compare ratings of terrains generated with our method, which
is very close to ratings given to real terrains.

Table 3: Comparison of Fractal Perlin Noise [32], ground
truth data and our proposed method based on user rating for
terrain generation.

Fractal Perlin  Ground Truth  Our

Mean 1.948 3.931 3.465
STD 1.085 1.298 1.074

5 CONCLUSION

We propose a novel framework for terrain generation introducing
concepts such as frequency separation using Fourier transform,
kernel blending and fBm fusion for generating patches which gives
a new perspective to terrain generation in a learning based frame-
work. Our framework is adaptive and multi-resolution for gener-
ating learning based infinite terrains procedurally which might
contribute greatly to the gaming and simulation community. We
test and report superior qualitative and quantitative results for
diffusion based models and show their applicability for terrain
generation. Along with that, we propose a state-of-the-art terrain
super-resolution model with a novel post-processing technique
which we employ for terrain enhancement.
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