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Abstract
Point cloud forecasting is a crucial task for the success of mo-
tion planning and state estimation problems. However, due to its
complex nature and challenges in integrating with existing archi-
tectures, it remains an extremely difficult and interesting problem.
LiDAR-based 3D sensing is one of the key components in modern
autonomous driving systems and leads to scalability challenges as
it yields large-scale point cloud data at a high frame rate. Range
image representation of point cloud offers a compact representation
of LiDAR data which enables applying powerful convolution net-
work architectures for predicting future range images (and thereby
point clouds). In this paper, we use range image representation and
propose two different non-recurrent deep network models for point
cloud forecasting. More specifically, we predict future point clouds
from past observed point clouds by introducing a spatio temporal
convolution (STC) block in the latent space of range images, thereby
avoiding the use of RNNs to achieve much faster inference. The
STC has two variants that use the temporal attention and Inception-
Net blocks, respectively. We perform experiments on two publicly
available datasets, namely KITTI and Nuscenes and report superior
quantitative and qualitative results in comparison to SOTAmethods
while offering compact model with faster inference speeds.
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Figure 1: Point cloud forecasting with our "Model 2".

1 Introduction
Autonomous navigation is a rapidly evolving field with the po-
tential to revolutionize various domains including transportation,
exploration, and warehouse automation. By integrating a sophis-
ticated array of sensors, computer vision algorithms, and deep
learning models, autonomous navigation systems can interpret
vast amounts of real-time data to construct accurate environmental
maps, plan optimal routes, and execute precise movements. Among
these sensor technologies, LiDAR plays a crucial role in autonomous
navigation, serving as a key component for creating large-scale
three-dimensional point clouds representing the surrounding en-
vironment in real-time. Apart from real-time sensing, predicting
the future evolution of the objects in the scene greatly aids in lo-
calization & collision avoidance kind of tasks [17]. Thus, reliable
point cloud forecasting [3, 11] is an important research challenge
in autonomous driving.

Nevertheless, working with temporally evolving sequences of
point clouds poses significant challenges. The unordered nature
of point clouds in the spatial dimension (despite being temporally
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ordered) and varying sampling sizes hinder the modeling of spatio-
temporal coherence. As a result, conventional architectures for fea-
ture encoding (e.g., CNNs) and sequence processing (e.g., LSTMs)
are unsuitable for direct application due to their inability to pro-
cess spatially unordered data. Consequently, there have been a few
breakthroughs in 3D computer vision where methods like Point-
Net [20] and its follow-up work PointNet++[21] have shown great
success in feature extraction from point clouds.

Additionally, LiDAR point clouds data in autonomous naviga-
tion tasks have the additional challenge of having non-uniform
sampling (farther regions have sparser sampling). This combined
with a high degree of occlusions and sensor noise in real-world
scenes makes it extremely challenging to capture the geometrical
structures of objects and predict them in future timesteps. Another
key challenge is that a full-scale LiDAR scan comprises over 100,000
points, thereby rendering feature extraction from these sequences
a memory-intensive task and hence inhibiting the real-time perfor-
mance.

Alternatively, range image representation of 3D point cloud (re-
fer subsection 3.1) offers a compact solution to represent 3D data as
a 2D matrix. This enables employing powerful convolution network
architectures for predicting future range images (frames) and thus
achieving point cloud forecasting. Although this representation
suffers from some information loss while projecting 3D points to
2D image plane, it is still much easier to process & scale up with
near real-time inference using well-established image-based deep
learning architectures.

Recent methods for point cloud forecasting with range image
representation [12, 16, 18] achieved impressive performance over
traditional point cloud-based methods. TCNet [16] outlined a 3D
CNN-based architecture to predict future frames and used masked
range images to improve the prediction and improve noise sup-
pression. Subsequently, PCPNet [12] proposed the use of seman-
tic understanding of point cloud along with a transformer-based
architecture to predict future frames. The recent method in [18]
proposed to use LSTM-based architecture to learn the temporal
coherence for range image prediction, with a much simpler and
easy-to-converge model. However, these methods often produce
extremely blurry results (loss of high-frequency details) and more
importantly significant loss of details for small objects in the scene
(refer to subsection 4.3). Additionally, the use of recurrent neural
nets [18] for temporal regularization leads to compact model size
but at the cost of slower inference time.

In this work, we propose a novel approach for point cloud fore-
casting from observed sequences of point clouds represented as
LiDAR range images. Our main contribution in this paper is the
introduction of a Spatio-Temporal Convolution (STC) block de-
signed to operate in the latent space for learning to exploit spatio-
temporal coherence in range images. More specifically, we em-
ploy an encoder-decoder architecture integrated with two variants,
namely Temporal Attention [28] and InceptionNet [4] modules to
effectively capture spatio-temporal dynamics. We perform exten-
sive empirical analysis on publicly available datasets and report
superior quantitative & qualitative results to demonstrate that our
method (both variants) outperforms existing state-of-the-art tech-
niques [18] in terms of both prediction accuracy as well as faster
inference time.

2 Related Works
Point cloud forecasting is crucial for the success of motion planning
algorithms [17]. Predicting future frames allows these algorithms to
anticipate the motion of surrounding objects and plan accordingly.
In the following section, we discuss existing literature critical to
our problem, divided into two subparts relevant to our study: Point
cloud forecasting and Spatio-temporal learning. For a more detailed
related work, please refer to the supplementary material.
Point Cloud Forecasting :Modeling spatio-temporal information
in point cloud forecasting has been a significant research direction.
Initial efforts focused on predicting scene flows between successive
point clouds to forecast future point cloud sequences [9, 37]. How-
ever, due to the high computational cost of scene flow methods,
their application in downstream tasks like point cloud forecasting
has often been limited. Recently methods have started forecasting
point clouds directly from raw point cloud data [7, 12, 18, 32, 33].
Generally, 3D LiDAR point clouds can be represented in multiple
forms, including explicit points [20, 21], voxels [15, 22], multi-view
images [26, 35, 36], or range images [12, 16, 18]. Most recent point-
voxel-based methods [7, 32, 33] are quite successful, however, they
are extremely slow and consume a high amount of memory. In
contrast, range image-based methods [12, 16, 18] often perform
better than other representations in both computational efficiency
and accuracy. However, despite decent performance in forecast-
ing, these methods struggle with small objects like humans and
trees, often producing blurrier range images. Recently, ATPPNet
[18] used LSTM-based architectures to improve temporal consis-
tency with a simpler, easier-to-converge model. However, even
with improvements in inference speed and accuracy, the method
still struggles to capture fine details. In this paper, we propose a
range image-based representation-based point cloud forecasting
method. Essentially converting the point clouds into range images,
thereby reformulating point cloud forecasting as a spatio-temporal
range image prediction problem.

Spatio-temporal Predictive Learning : As previously mentioned,
range image prediction can be considered as a form of spatio-
temporal prediction involving fixed sequences. The major challenge
with our datasets is the high degree of noise and the presence of a
moving camera, which sets them apart from other spatio-temporal
datasets [24]. Due to these complexities, the problem can be re-
framed as a spatio-temporal learning task focused on predicting
raw pixels from observed data [10, 25, 28, 31]. In the case of raw
pixel prediction methods, many recurrent [10, 25, 30, 31] and non-
recurrent methods [4, 28, 34] have been suggested. Although most
methods are computationally expensive, methods like SIMVP [4]
and TAU [28] have produced excellent results with relatively lower
computational overhead. SIMVP [4] uses multiple inception blocks
to model temporal information and leverages the large receptive
field convolutions inside each inception block for accurate temporal
predictions. On the other hand, TAU [28] separately models intra-
frame and inter-frame attentions to capture correlations within and
between frames. In this paper, we propose two encoder-decoder-
based architectures, incorporating a middle STC block inspired by
SIMVP [4] and TAU [28], that effectively capture temporal correla-
tions between input frames to predict future time frames.
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Figure 2: Overview of our proposed architecture.

3 Methodology
We aim to perform full-scale (non-downsampled) point cloud fore-
casting given a sequence of past point clouds. We propose to exploit
recent advancements in convolution-based deep learning architec-
tures for improved spatio-temporal feature extraction for this task.

3.1 Notations & Representation
The primary objective of our approach is to predict a future se-
quence of point clouds for a temporal window of 𝜂 timesteps, uti-
lizing observed data from 𝛾 timesteps of point clouds as input.
Let the initial 𝛾 timesteps of the input point-cloud be denoted as
𝑃𝐶 = {𝑃𝑡−𝛾+1, 𝑃𝑡−𝛾+2, . . . , 𝑃𝑡 }. We adopt range image representa-
tion for point cloud data. In order to obtain range image representa-
tion, we transform the input point clouds to spherical coordinates,
followed by mapping them to image coordinates.

The input point cloud is transformed into spherical coordinates
𝑆𝐶 = {𝑆𝑡−𝛾+1, 𝑆𝑡−𝛾+2, . . . , 𝑆𝑡 }, where 𝑆𝑡 = [𝑟, 𝜃, 𝜙] given by Equa-
tion 1:

𝑟 =

√︃
𝑥2 + 𝑦2 + 𝑧2

𝜃 = arccos
(𝑧
𝑟

)
𝜙 = − arctan 2(𝑦, 𝑥)

(1)

The derived spherical coordinates are then mapped into the image
space by converting them to range image𝑅𝐶 = {𝑅𝑡−𝛾+1, 𝑅𝑡−𝛾+2, . . . , 𝑅𝑡 },
using Equation 2:

𝑢 =

⌊
( 𝜙
2𝜋

+ 0.5) ×𝑊

⌋
𝑣 =

⌊(
1 − 𝜃 + |fov_down|

fov

)
× 𝐻

⌋
𝑅𝐶 (𝑢, 𝑣) = 𝑟,

(2)

where fov_down is the field of view of LiDAR in the downward
direction and fov is the total field of view of LiDAR. This range
image serves as input to our proposed model to predict the subse-
quent 𝜂 frames 𝑅𝐶 = {𝑅𝑡+1, 𝑅𝑡+2, . . . , 𝑅𝑡+𝜂 }. The predicted frames
are then concatenated along the temporal dimension to form a 4D
tensor of shape (𝜂,𝐶, 𝐻,𝑊 ) where 𝐶 = 1 and contains the range
distance 𝑟 . The height and width (𝐻,𝑊 ) of the range image are

Figure 3: Overview of our STC blocks (a) Temporal Attention
Block (Model 2) (b) Inception Block (Model 1).

set up depending on the field of view of the LiDAR sensor and
the number of LiDAR lines. Notably, a quantization process occurs
during spherical projection, when multiple points get projected
onto the same pixel, the nearer point to the sensor is selected; if
no points project onto a pixel, its value is set to zero. Although
this leads to loss of information, the key advantage of range image
representation is that now we can employ CNN-based architec-
tures to efficiently exploit the spatial as well as temporal coher-
ence in the data. The predicted range images are re-projected back
into the point-cloud space, resulting in the predicted point cloud
𝑃𝐶 = {𝑃𝑡+1, 𝑃𝑡+2, . . . , 𝑃𝑡+𝜂 }. Additionally, the ground truth mask
𝑀 = {𝑀𝑡−𝛾+1, 𝑀𝑡−𝛾+2, . . . , 𝑀𝑡 } is constructed by considering all
non-zero pixels in the original range image, i.e, 𝑀 (𝑢, 𝑣) ∈ {0, 1}.
This binary mask helps to retain focus on only those regions/pixels
in the range image where we have a valid 3D point projection.

3.2 Proposed Model
We propose an encoder-decoder architecture with a Spatio Tem-
poral Convolution (STC) block in the middle for computing the
spatio-temporal aggregation of features in the latent space, to pre-
dict future range image frames as outlined in Figure 2. The encoder
extracts multi-scale features in individual frames, while the STC
block performs convolutions across time (i.e., across 𝛾x𝐶 channels)
to capture temporal information. Finally, the decoder predicts the
future range images.

Encoder Architecture: The encoder consists of multiple convolu-
tion blocks alternating between one and two strides. Each convolu-
tion block contains a 3x3 2D-convolution layer followed by a group
normalization and a Leaky RELU [13] layer. The input to the encoder
is a batch of 4D tensor (𝐵,𝛾,𝐶, 𝐻,𝑊 ) where𝐶 = 1. The convolution
happens across the spatial dimension (𝐵×𝛾×𝐶×𝐻×𝑊 ), decompos-
ing input tensors into hidden feature maps of shape (𝐵,𝛾,𝐶, �̂�,�̂� ),
before passing on to the STC block.

STC Block: We use two different design choices for STC blocks
inspired by SIMVP [4] and TAU [28] yielding two model names,
Model 1 and Model 2 as shown in the Figure 3. The STC block
performs spatial-temporal convoluting across 𝛾 ×𝐶 channels on
(�̂�,�̂� ).

The first design choice for the STC block (in Model 1) consists of
multiple InceptionNet [27] blocks. The benefit of having multiple
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InceptionNet blocks is the use of large receptive fields to model
the large temporal sequences. Each InceptionNet block (Figure 3)
consists of multiple parallel convolution blocks of 3x3, 5x5, 7x7
and 11x11 kernels. The larger kernels help in retrieving global
motion (movement of the sensor) while the smaller kernels capture
more local motions (movement of other vehicles). The inception
net follows a multi-branch similar to U-Net [23] like architecture
which helps in retrieving both global and local information. The
input hidden representation is passed through multiple blocks from
top to bottom without reductions of spatial dimension and the
hidden information then moves from bottom to top. The module
also contains skip connections similar to U-Net [23].

The second design choice for STC blocks (in Model 2) employs
multiple temporal attention blocks. Each temporal attention block
(Figure 3) decomposes the incoming channels into intra-frame
static attentions and inter-frame dynamic attention units, using
the learned attention weights to reweigh the inputs. The static
attention consists of multiple depth-wise convolutions to model
the large receptive field across time frames, while the dynamic
attention block learns attention through a squeeze and excitation
network [6]. The decomposition is important to capture inter and
intra-frame correlations to produce more effective predictions.

Decoder Block: Both the STC modules return the same hidden
dimension as its input (𝐵, 𝜂,𝐶, �̂�,�̂� ) which is then passed through
the Decoder module to reconstruct the predicted range image. The
Decoder method is similar to Encoder except it uses transpose
convolution blocks instead to reconstruct the range image. Each de-
coder convolution block contains Convolution transpose followed
by group normalization and leaky RELU [13]. The final convolution
predicts two channels (𝐵, 𝜂,𝐶, 𝐻,𝑊 ) where 𝐶 = 2 which include
the range image and its corresponding mask.

3.3 Loss Functions
We predict both future 𝜂 range image frames and their correspond-
ing masks. The masks are used to remove the unfounded predicted
points, thereby avoiding regions corresponding to the sky, and the
empty void pixels created by spherical projection. For optimization,
we use three different types of losses. The range image loss 𝐿RV
is 𝐿1 loss calculated across all masked pixels between the ground
truth and the masked predicted frame given by Equation 3:

𝐿RV =
1
𝜂

𝑡+𝜂∑︁
𝑖=𝑡+1

𝑅𝑖 − 𝑅𝑖

1 , (3)

where 𝑅𝑖 is the ground truth range image and 𝑅𝑖 is the predicted
range image. The mask loss 𝐿mask is calculated with a Binary Cross
Entropy (BCE) loss between predicted masks and ground truth
mask values given by Equation 4

𝐿mask =
1

𝜂𝐻𝑊

𝑡+𝜂∑︁
𝑠=𝑡+1

𝐻−1∑︁
𝑖=0

𝑊 −1∑︁
𝑗=0

𝑀
(𝑖, 𝑗 )
𝑠 𝑙𝑜𝑔(�̂� (𝑖, 𝑗 )

𝑠 )

+(1 −𝑀
(𝑖, 𝑗 )
𝑠 )𝑙𝑜𝑔(1 − �̂�

(𝑖, 𝑗 )
𝑠 ), (4)

where𝑀 (𝑖, 𝑗 )
𝑠 are the ground truthmasks pixels and �̂� (𝑖, 𝑗 )

𝑠 are the
predicted mask pixels. Finally, the model is fine-tuned on Chamfer

distance loss [2] 𝐿CD after the masked range image is reprojected
back to point cloud space. The chamfer loss is given by Equation 5 :

𝐿CD =
1
𝜂

𝑡+𝜂∑︁
𝑖=𝑡+1


1
2
©« 1
|𝑃𝑖 |

∑︁
𝑝𝑖 ∈𝑃𝑖

min
𝑝𝑖 ∈𝑃𝑖

∥𝑝𝑖 − 𝑝𝑖 ∥2

+ 1
|𝑃𝑖 |

∑︁
𝑝𝑖 ∈𝑃𝑖

min
𝑝𝑖 ∈𝑃𝑖

∥𝑝𝑖 − 𝑝𝑖 ∥2
ª®®¬
 , (5)

where 𝑃𝑖 are the ground truth point cloud and 𝑃𝑖 is the predicted
masked point cloud. One thing to note here is that due to the slow
parallelism of the algorithm, the calculation of chamfer distance is
quite slow. Hence we only use chamfer distance to fine-tune on a
small number of epochs to improve the results of our model. The
total net loss is given by Equation 6 :

𝐿Total = 𝑤RV · 𝐿RV +𝑤M · 𝐿M +𝑤CD · 𝐿CD, (6)

where𝑤RV,𝑤mask and𝑤CD are the weights associated with each
loss. We have observed that training initially with range view and
mask loss provides a good initialization. While further fine-tuning
on chamfer distance loss [2] provides a better 3D awareness, at-
tending to the 3D points.

4 Experiments and Discussions
4.1 Dataset
For the quantitative analysis, we compare our results on two pub-
licly available datasets, KITTI [5] and NuScenes [1]. For qualitative
analysis, we provide bird-eye view (BEV) and range view (RV)
images derived from both KITTI [5] and NuScenes [1] datasets. Ad-
ditionally, we also test the robustness of our model on a downstream
task of localization using [29].

4.2 Experimental Setup
We use the observed point clouds from past𝛾 = 5 timesteps as input
and predicted the future 𝜂 = 5 timesteps’ point clouds as output.
The models were initially trained for 100 epochs using only 𝐿RV
and 𝐿mask, followed by fine-tuning with 𝐿CD for an additional 10
epochs. The training was performed using the Adam optimizer [8]
along with an exponential decay scheduler. The experiments were
executed on two Nvidia RTX A30 GPUs, with each model requiring
approximately 100 hours to train.

While comparing with SOTA, we re-train the nearest baseline
ATPPNet [18] in the same experimental settings as used for train-
ing our models. However, for other models [3, 11, 12, 16] we relied
on the available numbers in the existing literatures. We compare
our model with four range image-based point cloud forecasting
methods, namely TCNet [16], PCPNet [12], PCPNet Semantic [12]
and ATPPNet [18] while conducting quantitative analysis. Further-
more, we also compare our results with the point-based methods
(PointLSTM [3] andMoNet [11]) on a downsampled KITTI [5] point
cloud of 65536 points similar to the evaluation conducted by [18].
For more details about our experimental setup, please refer to our
supplementary material.
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(a) PCPNet [12]
(b) PCPNet
Semantic[12] (c) ATPPNet [18] (d) Ours (Model 1) (e) Ours (Model 2)

Figure 4: Qualitative results on KITTI dataset [5].

(a) ATPPNet T1 [18] (b) Ours (Model 1) T1 (c) Ours (Model 2) T1 (d) ATPPNet T5 [18] (e) Ours (Model 1) T5 (f) Ours (Model 2) T5

Figure 5: Qualitative results on NuScenes dataset [1].

Figure 6: Qualitative visualization of the predicted range
image on KITTI dataset [5] (color coding: Red closer depth
& Blue is farther depth).

Figure 7: Qualitative visualization of the predicted range
image onNuScenes dataset [1] (color coding: Red closer depth
& Blue is farther depth).
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Table 1: Quantitative comparison on KITTI dataset [5].

Chamfer Distance Loss ↓ Range Image Loss ↓
Predicted
timestep

TCNet
[16]

PCPNet

[12]

PCPNet
Seman-
tic [12]

ATPPNet

[18]

Model 1 Model 2 TCNet
[16]

PCPNet

[12]

PCPNet
Seman-
tic [12]

ATPPNet

[18]

Model 1 Model 2

𝑇 + 1 0.2530 0.2520 0.2420 0.2527 0.2228 0.1940 0.5540 0.5430 0.5030 0.4437 0.4285 0.3951
𝑇 + 2 0.3090 0.3010 0.2980 0.3886 0.2756 0.2401 0.6710 0.6620 0.6200 0.5544 0.5350 0.4854
𝑇 + 3 0.3770 0.3620 0.3540 0.3653 0.3347 0.2876 0.7790 0.7730 0.7270 0.6539 0.6369 0.5754
𝑇 + 4 0.4480 0.4350 0.4270 0.3179 0.3994 0.3480 0.8780 0.8720 0.8250 0.7486 0.7281 0.6622
𝑇 + 5 0.5470 0.5140 0.5030 0.4722 0.4754 0.4171 0.9740 0.9730 0.9200 0.8426 0.8177 0.7548

Mean 0.3870 0.3730 0.3650 0.3594 0.3415 0.2974 0.7710 0.7650 0.7190 0.6486 0.6293 0.5746

Table 2: Quantitative comparison on NuScenes dataset [1].

Chamfer Distance Loss ↓ Range Image Loss ↓
Predic-
-ted
timestep

ATPPNet
[18]

Model
1

Model
2

ATPPNet
[18]

Model
1

Model
2

𝑇 + 1 0.5576 0.5104 0.4696 0.4851 0.4319 0.3913
𝑇 + 2 0.7052 0.6353 0.6164 0.5387 0.4773 0.4428
𝑇 + 3 0.6618 0.6103 0.5837 0.5998 0.5283 0.5033
𝑇 + 4 0.6292 0.5680 0.5362 0.6610 0.5799 0.5612
𝑇 + 5 0.7695 0.6986 0.6921 0.7197 0.6292 0.6160

Mean 0.6647 0.6045 0.5796 0.6009 0.5293 0.5029

4.3 Qualitative Results
We render both (color-coded) range images as well as birds-eye-
view (BEV) of 3D point clouds for visualizing the performance of
methods.

In Figure 6, we show the color-coded 2D rendering of range
images for a specific frame from a sequence in the KITTI dataset.
We can observe that in comparison to ATPPNet [18], both our
models (Model 1 and Model 2) yield sharper results consisting
of better high-frequency details in the scene. While comparing
Model 1 and Model 2, the latter produces much more accurate
details with higher edge-preserving qualities. The pattern remains
consistent when we observe range images in the NuScenes dataset
[1] in Figure 7. Although these images are more blurry (due less
number of LiDAR sensing channels) compared to their KITTI [5]
counterparts, the results from Model 1 and Model 2 appear sharper
than those produced by ATPPNet [18].

Figure 4 and Figure 5 show the visualization of birds-eye-view
(BEV) images of predicted 3D point clouds onKITTI [5] andNuscenes
[1] datasets, respectively. We can infer superior quality of point
cloud forecasting using our models in comparison to SOTA method
(ATPPNet) with significantly less noise while capturing finer details
with better edge preserving qualities.

While comparing Model 1 and Model 2, we again observe better
point cloud prediction for latter compared to former when compar-
ing dense point cloud datasets such as KITTI [5] (shown in Figure 4).

This disparity in performance can be attributed to attention mecha-
nism in Model 2 enabling it to capture long-range spatio-temporal
dependency. A similar trend is observedwhen comparing on sparser
datasets such as Nuscenes [1] (shown in Figure 5), where we ob-
serve Model 2 to slightly outperform Model 1. Nevertheless, both
our models consistently outperform ATPPNet [18].

4.4 Quantitative Results
We can infer from Table 1 that, our models achieved superior per-
formance over best performing SOTA method i.e., ATPPNet [18]
with an overall reduction of 4.98% & 17.20% in the mean Chamfer
Distance and a decrease of 2.98% & 11.41% in the mean range im-
age loss on the KITTI dataset for proposed Model 1 and Model 2,
respectively. In the case of the Nuscenes dataset, as reported in Ta-
ble 2, we observe an overall decrease of 9.04% & 12.79% in the mean
chamfer distance prediction and a decrease of 11.92% & 16.31% in
the mean range image loss for Model 1 and Model 2, respectively
when compared to ATPPNet [18].

In the case of downsampled point cloud, as reported in Table 3
we notice a decrease of 7.04% in the mean chamfer distance for
our Model 2, however, we notice a slight increase of 6.71% Model 1
when compared to the nearest baseline [18].

Additionally, we provide quantitative comparison of the model
size and inference time of our method with existing methods and
reported results in Table 4. We attained an average inference time
(per frame) of 53.65ms and 19.53ms for Model 1 and Model 2 re-
spectively which in comparison to ATPPNet, is a speedup of 1.95x
and 5.37x respectively when compared using KITTI [5] dataset. In
regard to model size, our main Model 2 is also much smaller in com-
parison to ATPPNet being almost half in size, however, Model 1 is
slightly bigger in terms of model size. Nevertheless, it is important
to note that faster inference is of critical importance in the case of
autonomous driving scenarios.

4.5 Effect on Downstream Tasks
F-LOAM [29] (Fast LiDAR Odometry and Mapping) is a real-time
method for Odometry and Mapping using range measurements. We
adopt F-LOAM [29] to estimate the motion of the vehicles using
the ground truth and the predicted point cloud from our method as
well as one of our baseline [18]. We try the experiment on sequence
10 of KITTI [5] dataset. We perform two sets of experiments. In the
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Table 3: Quantitative Ccomparison with Baselines on downsampled KITTI Point Clouds [5].

Chamfer Distance ↓
Predicted
timestep

PointLSTM
[3]

MoNet [11] TCNet [16] PCPNet [12] PCPNet Se-
mantic [12]

ATPPNet [18] Model 1 Model 2

𝑇 + 1 0.3320 0.2780 0.2900 0.2771 0.2725 0.2219 0.2524 0.2201
𝑇 + 2 0.5610 0.4090 0.3570 0.3977 0.3987 0.2821 0.3114 0.2715
𝑇 + 3 0.8100 0.5490 0.4410 0.3827 0.3870 0.3526 0.3760 0.3239
𝑇 + 4 1.0540 0.6920 0.5220 0.3327 0.3295 0.4284 0.4490 0.3898
𝑇 + 5 1.2990 0.8420 0.6290 0.4760 0.4831 0.5119 0.5285 0.4651

Mean 0.8110 0.5540 0.4480 0.4220 0.3742 0.3594 0.3835 0.3341

Table 4: Comparison of models with total parameters and
inference time on KITTI [5] and Nuscenes [1] Datasets.

Total Param-
eters

Inference
time (KITTI)

Inference
time
(Nuscenes)

TCNet [16] 17.0M 46.28ms -
PCPNet [12] 22.6M 18.59ms -
ATPPNet [18] 11.0M 104.85ms 82.33ms
Model 1 13.6M 53.65ms 17.20ms
Model 2 5.5M 19.53ms 9.64ms

Table 5: F-LOAM [29] pose error.

LOAM Pose Error ↓
Predicted
timestep

ATPPNet [18] Model 1 Model 2

𝑇 + 1 0.0981 0.0873 0.0806
𝑇 + 2 0.1404 0.1126 0.0998
𝑇 + 3 0.1930 0.1476 0.1260
𝑇 + 4 0.2537 0.1873 0.1590
𝑇 + 5 0.3217 0.2302 0.1971

Mean 0.2014 0.1530 0.1325

first one we used a temporal window of 10 point clouds (5 observed
and 5 predicted) from ATPPNet [18], Model 1, and Model 2 and
calculate the pose error as given by : 𝐿𝑙𝑜𝑎𝑚 = | |𝑝𝑇 − 𝑝𝑇 | |22 , where
𝑝𝑇 is the motion estimate from the predicted point cloud and 𝑝𝑇 is
the motion estimate from the ground truth point cloud. The results
obtained are reported in Table 5. We notice a sharp improvement in
localization using predicted point clouds from our methods (Model
1 & Model 2) resulting in an improvement of 24% and 34.2%, over
the mean F-LOAM disparity score, respectively.

As part of the second experiment, we aim to perform a qualita-
tive analysis by recovering a continuous trajectory of the vehicle
by considering predictions from predicted point clouds instead of
partially observed ones. We first predict future point clouds from an
observed sequence with a temporal window of 5 timesteps for the
entire sequence ten of KITTI dataset [5]. These predictions were

then concatenated into continuous sequences for 𝑇 + 1 and 𝑇 + 5
time steps essentially obtaining a temporal window of 1192 frames,
covering almost the entire sequence ten of the KITTI [5] dataset.
We then employed F-LOAM [29] to predict the ego vehicle’s trajec-
tory from the sequences of predicted point clouds (𝑇 + 1 and 𝑇 + 5)
and compared these predictions with the ground truth trajectory
predicted using the ground truth point clouds. A visualization of
ego trajectory in Figure 8 demonstrates a significant improvement
in trajectory prediction for Models 1 and 2 as compared to ATPPNet
[18], particularly at 𝑇 + 5. Both of these experiments demonstrate
superior performance of our method for downstream motion esti-
mation task.

5 Ablation Studies
In this section, we present a detailed analysis of each component
of our model and also highlight some of the rationale behind the
design choices that we have adopted.

Impact of loss functions: We perform ablative experiment by
removing 𝐿CD, 𝐿RV and 𝐿mask and report results in Table 6. The
results indicate deterioration in performance while removing any
of the loss function (i.e., increase in chamfer distance values). Specif-
ically, we observe higher noise due to the removal of 𝐿CD in the
results. On the other hand, removing 𝐿mask results in points be-
ing inpainted in the empty pixels of range image which increases
redundant points in the projected point clouds and consequently
increase the overall chamfer distance score. However, interestingly
the removal of 𝐿CD leads to better range image prediction since
fine-tuning the model on 𝐿CD leads to the model becoming more 3D
aware which affects its corresponding 2D predictions. For relevant
qualitative evaluation refer to our supplementary material: Figure
S1 and S2.
Effect on sequence length: In Table 7, we report the results by
varying the temporal window size (input and output number of
frames vary together). We observe that by using fewer frames our
models yield better forecasting for short duration as listed in Table 7.
However, increasing the window size results in an overall perfor-
mance drop due to the higher uncertainty associated with future
states as well as higher variance in spatio-temporal dimensions.
Thus, we adopt a window size of 5 for reporting results as it strikes
the perfect balance between accuracy and long-term forecasting.
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Table 6: Results of ablation study on the impact of different losses in the model.

Chamfer Distance ↓ Range View Loss ↓
Original without 𝐿CD without 𝐿mask Original without 𝐿CD without 𝐿mask

Predicted
timestep

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

𝑇 + 1 0.2228 0.1940 0.3547 0.3160 0.3065 0.2685 0.4285 0.3951 0.4120 0.3811 0.4586 0.4231
𝑇 + 2 0.2756 0.2401 0.5096 0.4425 0.4091 0.3498 0.5350 0.4854 0.5130 0.4700 0.5590 0.5133
𝑇 + 3 0.3347 0.2876 0.6729 0.5779 0.3912 0.3464 0.6369 0.5754 0.6106 0.5591 0.6572 0.6039
𝑇 + 4 0.3994 0.3480 0.8410 0.7399 0.3535 0.3071 0.7281 0.6622 0.7013 0.6452 0.7494 0.6917
𝑇 + 5 0.4754 0.4171 1.0356 0.9199 0.4681 0.4100 0.8177 0.7548 0.7935 0.7343 0.8442 0.7835

Mean 0.3415 0.2974 0.6828 0.5993 0.3857 0.3364 0.6293 0.5746 0.6061 0.5579 0.6537 0.6031

Table 7: Results of ablation study on performance changes on varying window size.

Chamfer Distance ↓ Range View Loss ↓
3 5 7 3 5 7

Predicted
timestep

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

𝑇 + 1 0.2341 0.2023 0.2228 0.1940 0.2729 0.2281 0.4049 0.3645 0.4285 0.3951 0.4566 0.4242
𝑇 + 2 0.2669 0.2289 0.2756 0.2401 0.3971 0.3307 0.5128 0.4606 0.5350 0.4854 0.5658 0.5176
𝑇 + 3 0.2970 0.2537 0.3347 0.2876 0.5387 0.4652 0.6307 0.5683 0.6369 0.5754 0.6621 0.6081
𝑇 + 4 - - 0.3994 0.3480 0.4583 0.4057 - - 0.7281 0.6622 0.7447 0.6908
𝑇 + 5 - - 0.4754 0.4171 0.3343 0.2761 - - 0.8177 0.7548 0.8220 0.7708
𝑇 + 6 - - - - 0.4704 0.3946 - - - - 0.9063 0.8534
𝑇 + 7 - - - - 0.6346 0.5571 - - - - 0.9986 0.9460

Mean 0.2660 0.2283 0.3415 0.2974 0.4438 0.3797 0.5161 0.4645 0.6293 0.5746 0.7366 0.6873

(a) ATPPNet T1 [18] (b) Ours (Model 1) T1 (c) Ours (Model 2) T1 (d) ATPPNet T5 [18] (e) Ours (Model 1) T5 (f) Ours (Model 2) T5

Figure 8: Trajectory prediction using F-LOAM [29] on KITTI Dataset [5].

6 Conclusions and Future Work
Our approach achieves high-fidelity point-cloud prediction with
significantly faster inference than the original baselines. However,
it suffers from excessive blurring and loss of high-frequency details.
Incorporating more scene context, such as fusing RGB images from
cameras or fusing the semantics [12], could address these issues.
Along with that incorporating additional extrinsic information,
such as data from IMU sensors, could further improve the accuracy
of point cloud forecasting. Additionally, refining the loss functions,
possibly through weak supervision from a discriminator [14] or

gradient-based losses [19], could help preserve high-frequency de-
tails. Finally, we believe that constructing a global canonical struc-
ture, from which future steps can be derived, as explored in [7],
offers another interesting direction for future research.
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