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Figure 1. We present MANUS, a markerless grasp capture method, utilizing articulated 3D Gaussian neural representation to model the
personalized hand model instead of using the parameter shape model. With more accurate geometry details, our method can access similar
contact results with real-world capture compared with other template-based hand approaches.

Abstract

Understanding how we grasp objects with our hands has
important applications in areas like robotics and mixed re-
ality. However, this challenging problem requires accurate
modeling of the contact between hands and objects. To
capture grasps, existing methods use skeletons, meshes, or
parametric models that can cause misalignments resulting
in inaccurate contacts. We present MANUS, a method for
Markerless Hand-Object Grasp Capture using Articulated
3D Gaussians. We build a novel articulated 3D Gaussians
representation that extends 3D Gaussian splatting [33] for
high-fidelity representation of articulating hands. Since our
representation uses Gaussian primitives, it enables us to ef-
ficiently and accurately estimate contacts between the hand
and the object. For the most accurate results, our method
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requires tens of camera views that current datasets do not
provide. We therefore build MANUS-Grasps, a new dataset
that contains hand-object grasps viewed from 53 cameras
across 30+ scenes, 3 subjects, and comprising over 7M
frames. In addition to extensive qualitative results, we also
show that our method outperforms others on a quantitative
contact evaluation method that uses paint transfer from the
object to the hand.

1. Introduction

Each day, the average person effortlessly grasps more than
a hundred different objects [80, 82]. This seemingly routine
act of grasping poses a significant challenge for machines,
as is evident from the extensive research on this topic in
computer vision [18] and robotics [4, 5]. High-fidelity cap-
ture of natural human grasps could unlock new applications
in areas like robotics and mixed reality, but this challenging
problem first requires us to accurately estimate the contact
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between the hand and the object [6].
Previous work has addressed this problem by using

gloves or special sensors [23, 54], but these devices are
cumbersome and restrict hand movement. Therefore, a
large body of work has focused on markerless grasp cap-
ture using one or more cameras [2, 7, 11, 24, 65].

Most of these methods use skeletons [24], meshes [2],
or parametric models [30, 58] to model the hand and ob-
ject. Although these representations are flexible and easy to
use, they often cannot accurately model hand shape result-
ing in reduced contact accuracy (see Figure 1). Recently,
articulated neural implicit representations [16, 45, 50] have
been proposed as alternatives, but modeling contact in im-
plicit representations is challenging and requires expensive
sampling.

To overcome these limitations, we introduce MANUS, a
method for Markerless Hand-Object Grasp Capture using
Articulated 3D Gaussians. The key component of MANUS
is a 3D Gaussian splatting [33] approach to build MANUS-
Hand, an articulated hand model composed of 3D Gaus-
sians that make it faster to train and infer than many
implicitly-represented models. Similarly, we also capture
the object using static 3D Gaussians. Since both MANUS-
Hand and the object are modeled using Gaussians primitives
with explicit positions and orientations, we can efficiently
compute both instantaneous and accumulated contacts be-
tween them (see Section 4.2). When trained on datasets
with tens of camera views, our method can accurately cap-
ture grasps since 3D Gaussians promote accurate pixel-level
alignment resulting in more precise shape and contact esti-
mation compared to existing methods.

Previous datasets [6, 20, 24, 25, 27, 41, 66, 81] have
been instrumental in addressing the grasp capture problem
but (1) they use specialized hardware (heat-sensitive cam-
eras [6], or markers [66]) to capture hand-object grasps,
making it hard to scale, (2) RGB camera-only datasets [7,
11, 20, 36], contain only a few views with occlusions mak-
ing it hard to learn accurate contacts, and (3) they rely
on the parametric models or skeletons to estimate con-
tacts resulting in inaccurate contacts. Our main insight
is that accurate contact modeling is much easier with
a large number of camera views that reduce the effect
of (self-)occlusions. Therefore, we curated a one-of-a-
kind kind real-world multi-view RGB dataset, MANUS-
Grasps, comprising over 7̃M frames captured using 53
high-framerate cameras, providing a full 360-degree cov-
erage and encompassing 400+ grasp sequences occurring in
over 30 diverse everyday scenarios. In addition, this dataset
contains 15 evaluation sequences that employ wet paint on
objects to leave a contact residue on the hand [31] providing
a natural way to evaluate contact quality without additional
equipment or annotation. We show extensive experiments
ablating and justifying different components of MANUS-

Hand, as well as the MANUS grasping method. In addition,
we also provide a new metric of contact quality to assess the
performance of MANUS against template-based methods.
While our method is not designed for photorealism, we ob-
serve that the captured grasping sequences are comparable
in visual quality to the best implicit hand models.

To summarize, our contributions include:
• MANUS-Hand, a new efficient representation for articu-

lated hands that uses 3D Gaussian splatting for accurate
shape and appearance representation.

• MANUS, a method that uses MANUS-Hand and a 3D
Gaussian representation of the object to accurately model
contacts.

• MANUS-Grasps, a large real-world multi-view RGB
grasp dataset with over 7M frames from 53 cameras, pro-
viding full 360-degree coverage of 400+ grasps in over 30
diverse everyday life scenarios.

• A unique and novel approach to validate contact accuracy
using paint transfer between the object and the hand.

2. Related Work

Representations: Skeletons and collections of shape prim-
itives were some of the first representations to be used for
hand–object interaction modeling [54, 65], but these rep-
resentations are often not accurate enough for contact es-
timation. Meshes [2] and parametric models [30, 58] are
currently the most popular alternatives but can also be mis-
aligned with observations due to their lower-dimensional
representation (see Figure 1).

Coordinate-based implicit neural networks, or neural
fields [74], have shown great promise in accurately mod-
eling shape and appearance in static scenes [12, 14, 33,
42, 44, 45, 49, 51, 63, 70, 76, 78] as well as dynamic
scenes [22, 38, 43, 69, 75, 77]. Several methods specif-
ically address articulated shapes [37] like human bod-
ies [37, 40, 52, 53, 72], or hands [16, 32, 39, 50, 55]. How-
ever, they use representations that are inefficient for sam-
pling and contact estimation. In contrast, we propose a
new articulated neural field representation that extends 3D
Gaussian splatting [33] to hands enabling efficient train-
ing/inference and contact estimation.
Hand-Object Interaction Capture: Previous work has
attempted to model hand-object interactions using skele-
tons [24, 36], or customized meshes [2] as the hand repre-
sentation without explicitly estimating contacts. Most other
work [11, 20, 27, 41, 66] uses MANO in combination with
mocap, or one or more camera views. While it becomes eas-
ier to estimate contact with a parametric mesh model, mis-
alignments are still common (see Figure 1). To overcome
the difficulty of accurate contact estimation, some meth-
ods resort to physical simulation [15, 68, 79], but these are
limited to synthetic grasps only. In contrast, we propose a
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template-free articulated 3D Gaussian splatting model that
provides a natural way to estimate accurate contacts.
Grasp Datasets: Datasets for human grasps are challeng-
ing to obtain because they need specialized hardware, ex-
tensive annotation, and significant post-processing to make
them useful. Some datasets use markers or special gloves
to track the hand and object [3, 17, 23, 67] but this hin-
ders natural hand motion and introduces changes in image
appearance. Synthetic datasets [27, 47, 48] suffer from
a domain gap that makes it challenging to generalize to
real data. Therefore, work has focused on manual annota-
tions [2, 8, 57, 65], optimization [24], or automatic annota-
tion [11, 62] from RGB or depth. Many of these datasets
provide only 3D hand poses and lack information about
contacts. Other datasets like InterHand2.6M [46, 81] are
limited to hands only without any objects, while others [61]
focus on 2D understanding only. Addressing these limita-
tions, HOnnotate [24] introduces a markerless system for
automatically annotating frames across 77K frames. How-
ever, the variety of objects and grasps in this dataset is
somewhat limited. ContactDB [6] and ContactPose [7]
address this limitation targets a broader variety of grasps.
While ContactDB is captured using thermal imaging, Con-
tactPose uses multi-view RGB-D data. Nonetheless, both
methods are restricted to 3D hand poses, use non-realistic
objects, and lack sufficient views for neural fields.

In contrast, we introduce MANUS-Grasps that includes
over 400+ grasps views from 53 cameras capturing at
120 FPS specifically to support neural field methods. In
total, we provide over 7M frames with ground truth camera
poses, segmentation, and estimated contacts.

3. Background
We briefly summarize recent advances in modeling radi-
ance fields of static and dynamic scenes using 3D Gaus-
sians [33, 43, 73]. Our method (see Section 4) extends the
3D Gaussians representation to articulated objects like the
hand, and for grasp capture.
Static 3D Gaussians: Given multi-view images and a
sparse point cloud of the scene, a set of 3D Gaussian prim-
itives can be defined across world space x ∈ R3×1 as,

G(x) = e
−1
2 (x−µ)TΣ−1(x−µ),

where each Gaussian primitive has 3D position (µ), opacity,
anisotropic covariance matrix (Σ), and spherical harmonic
(SH) coefficients. During the training of the radiance field,
the properties of the initial 3D Gaussians are optimized to-
gether with a tile rasterizer [33] with the objective of mini-
mizing pixel loss.
Dynamic 3D Gaussians: The 3D Gaussians approach has
recently been extended to dynamic scenes [33, 73]. [73] in-
troduces a deformation field that tracks changes in the posi-

Dataset #N Images
(Views)

Annot. Type

w/o Contacts Annotation
H2O-3D [25] 76k (5) multi-kinect

FHPA [23] 105k (1) magnetic
HOI4D [41] 2.4M (1) single-manual

FreiHand [81] 37k (8) semi-auto
HO3D [24] 78k (1-5) multi-kinect

DexYCB [11] 582k (8) multi-manual
ARCTIC [20] 2.1M (9) mocap

w/ Estimated Contacts Annotation
ContactPose [7] 2.9M (3) multi-kinect

GRAB [66] - (-) mocap
H2O [36] 571k (5) multi-kinect

w/ Ground-Truth Contacts Annotation
MANUS-Grasps 7M (53) multi-auto(Ours)

Table 1. Dataset Comparison of existing Real World Datasets.
The hands in previous datasets are represented by skeleton and
MANO. Different from other works, we use Gaussian to model
the hand. The keyword “single/multi-manual” denotes whether
single or multiple views being used to annotate manually.

tion of the Gaussians and shape changes. Similarly, [43] en-
able Gaussians to move and rotate over time while maintain-
ing their color, opacity, and size. While these methods can
capture dynamic and deformable scenes, they do not pro-
vide a way to control dynamic motion, e.g., using a skele-
ton. Furthermore, in these methods, Gaussians are free to
move within the scene without any restrictions, which isn’t
suitable for representing hands due to their kinematic struc-
ture. An articulated 3D Gaussians representation would be
advantageous for grasp capture since it would enable low-
dimensional skeleton-based control of the hand.

4. Method

MANUS aims to perform markerless capture of human
hand grasps by accurately estimating the shape, appearance,
and precise contact between the hand and the object from
multi-view RGB videos. We achieve this by combining
MANUS-Hand with an object model, both represented as
3D Gaussians, enabling us to compute contacts more effi-
ciently than sampling-based implicit representations. Fig-
ure 2 provides an overview of the our method.

4.1. MANUS-Hand

Our template-free, articulated hand model MANUS-Hand
adopts 3D Gaussian splatting as the representation for accu-
rate shape and appearance modeling of hands. Our model
can be trained on sequences from any multi-view dataset to
build an articulable hand model at any novel pose.
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Figure 2. MANUS-Hand is a template-free, articulable hand model learned from multi-view hand sequences which utilizes 3D Gaussian
splatting representation for accurate modelling of the shape and appearance of hands.

Figure 3. MANUS leverages MANUS-Hand to drive the hand
in the grasp scene and an object to model both instantaneous and
accumulated contacts between the two.

Representation: MANUS-Hand (see Figure 2) is com-
posed of a skeleton with 21 bones and has 26 degrees of
freedom. We built a custom pose estimation pipeline that
uses AlphaPose [21] to estimate the 3D joint positions fol-
lowed by an inverse kinematics fit (see appendix). Since
bone lengths can vary among different individuals, we esti-
mate these lengths from the dataset and adjust the skeleton
accordingly. The unique shape and appearance of a per-
son’s hand in a canonical pose are determined by the states
of 3D Gaussians, i.e., positions µ, covariances Σ, opacities
α, and spherical harmonics coefficients ϕ. The covariance
of each Gaussian in the canonical space is further defined
as Σ = RSSTR, where R and S denote the rotation and
scaling of the Gaussians.
Optimization: A unique MANUS-Hand is optimized sep-
arately for each hand from a dense multi-view dataset con-
taining approx 20 hand poses. To initialize Gaussian states
in MANUS-Hand, we set their means to be points on a nor-
mal distribution centered at the midpoint of each bone in
a canonical hand pose, with the distribution’s standard de-
viation adjusted to match the bone’s length. We follow a
similar protocol as [33] to initialize the covariances, opac-
ity, and SH coefficients.

To get the Gaussian positions in the posed space, for-
ward kinematics and linear blend skinning is applied to the
canonical Gaussians. One way to obtain skinning weights
is to assign MANO weights [58] directly to the closest
Gaussians. However, this approach results in artifacts be-
cause Gaussians could move in unpredictable ways during
training leading to mismatched skinning weights (refer to
supp.) To address this, we create a canonical grid inspired
by Fast-SNARF [13]. Skinning weights are then allocated
to grid voxels using the nearest neighbor method, termed
as grid weights. Now to obtain the skinning weights for
the queried Gaussians W in the canonical space, trilinear
interpolation of these grid weights is performed. We cal-
culate the transformed Gaussian positions using a per-bone
transformation matrix, denoted as Tb and linear blend skin-
ning: Tg = WTb, µp = Tgµ, where µp represents the loca-
tion of Gaussians in the posed space, and Tg represents the
transformation matrix for each Gaussian. To compute the
covariance of the Gaussians in the posed space, it is trans-
formed using a rotation matrix Rg , derived from from Tg .
This is expressed as Σp = RgΣR

T
g . Regarding the appear-

ance, we optimize spherical harmonics coefficients for each
Gaussian ϕg in the canonical space. To derive the colors
in the transformed or posed space, the view direction from
posed space νgp is first converted to the canonical space νgc
as νgc = T−1

g νgp , using Tg for each Gaussian. After this
step, we use these transformed view directions µg

c to query
the spherical harmonics coefficients in canonical space and
get corresponding RGB colors for each posed Gaussian. To
get the final image rendering, all Gaussian states currently
in the posed space are used as inputs to a differentiable ras-
terizer [33], denoted as R

I = R(µp, νc,Σp, α, ϕ), (1)

where I is the rendered image. During optimization, the
Gaussian states are optimized using to minimize pixel loss
on the posed hand. To optimize all Gaussian states, we im-

4



pose a rendering loss L1 = ∥Î − I∥ and structural simi-
larity [71] loss LSSIM between synthesized image I and
ground truth image Î of the posed hand. To further improve
the perceptual quality of the synthesized images, we add an
additional perceptual loss Lperc [29].

To avoid highly anisotropic Gaussians that could cause
geometric artifacts in the contact estimation, we incorporate
an isotropic regularizer which ensures optimized Gaussians
remain as isotropic as possible. If mins ∈ R3 and maxs ∈
R3 are the minimum and maximum scale of the optimized
Gaussians, then isotropic regularizer Liso is defined as

Liso = (
mins
maxs

− s)2, (2)

where s is set to be 0.4. Our final loss function is Lh =
αL1 + βLSSIM + γLperc + δLiso.
Inference: Once the Gaussian states are optimized in the
training phase, we can drive MANUS-Hand using a skele-
ton estimated using our pose estimation pipeline. Given a
novel pose during the inference, MANUS-Hand outputs the
transformed Gaussians as well as the rendered image from
a particular view.

4.2. MANUS: Grasp Capture

While MANUS-Hand enables high-fidelity articulated hand
modeling, it is not designed for capturing grasps and con-
tacts. To capture grasps, we need a representation of the
object as well as a method to estimate contacts.
Object Representation: For accurate representation of ob-
jects, we build a non-articulated Gaussian representation
following Section 4.1 with some improvements to maintain
geometric consistency and accuracy. To prevent floaters
commonly found in implicit represntations, we prune out-
lier Gaussians during training by projecting them to the im-
age and culling if they lie outside the object mask.
Grasp Capture: To capture the grasp in a particular se-
quence, we first articulate MANUS-Hand using the esti-
mated hand pose. We then construct the object model as
described above. Next, we combine both hand and object
Gaussians. More specifically, if Gh and Go are the hand
Gaussians and object Gaussians in the grasp scene, we sim-
ply concatenate the Gaussians Gf = {Go, Gh}. Because
we use Gaussian Splatting, it allows such a concatenation
operation naturally – this would not be possible with im-
plicit representations [16, 37, 50]. As the rasterization mod-
ule only requires a set of Gaussians and their states, we
can seamlessly merge hand and object Gaussians for ev-
ery frame. The final grasp image is given by a rasterized
composition of these Gaussians using Equation (1).
Contact Estimation: The contact map is calculated based
on the proximity in 3D space between hand and object
Gaussian positions. For each Gaussian on the hand, we find
the closest Gaussian on the object. This pair is considered to

be in contact if their distance is less than a certain threshold,
and the same applies when assessing contact from the ob-
ject’s perspective. Specifically, if Gh represents the Gaus-
sians on the hand and Go those on the object in the posed
space, then the 3D contact map between them is defined as:

C =

{
d(Gh, Go), if d(Gh, Go) < τ

0, otherwise
,

where d represents the pairwise Euclidean distance between
the Gaussian locations. A contact is considered to have oc-
curred if this distance is less than τ (τ = 0.004 in our ex-
periments), which is the predefined threshold for contact.
We then use this method to estimate two kinds of contact
maps on the hand and object: (1) an instantaneous con-
tact map that denotes contact at a specific timestep, and
(2) an accumulated contact map that denotes contact after
the grasping has concluded. To get the accumulated contact
map Cacc we simply add the previous frame’s accumulated
contact map to current frame. For rendering contact maps,
we employ Equation (1) using the contacting distance as the
color value of each Gaussian.

4.3. MANUS-Grasps

For our grasp capture method to work well, a key require-
ment is a multi-view RGB dataset with tens of camera views
that help resolve (self-)occlusions. Many prior datasets
(see Section 2) contain multi-view images or video of hand
grasps [24, 62, 67], but none have the large number of views
needed to support neural field representations or are limited
to hands only [46]. We therefore present MANUS-Grasps,
a large real-world multi-view RGB grasp dataset with over
7M frames from 53 cameras, providing full 360-degree cov-
erage of 400+ grasps in over 30 diverse everyday scenarios.
Capture System: Our customized data capture setup con-
sists of 53 RGB cameras uniformly located inside a cubical
capture volume with each cube face consisting of 9 cam-
eras. The sides of the cube are illuminated evenly using
LED lights. Each RGB camera records at 120 FPS with a
resolution of 1280 × 720. The cameras are software syn-
chronized with a frame misalignment error of no more than
3 ms. The multi-view system is calibrated for camera intrin-
sics and extrinsics using COLMAP [59, 60] with fiducial
markers on the walls.
Capture Protocol: Our capture protocol consists of four
steps. First, we recorded multi-view videos of a subject’s
right hand as they performed a brief articulating movement.
Next, we capture only the object without the hand. Then,
without moving the object, we record multi-view videos of
the subject’s hand grasping the object. We repeat this pro-
cess 30 times per subject with 2-5 grasps per object. For
evaluation sequences, we additionally capture a canonical
pose at the end to record accumulated contacts seen in the
transferred paint (see below).
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Ground Truth Contact: A unique feature of our dataset is
the capture of 15 sequences where the object has wet paint
during the grasp [31]. As a result, paint is transferred to the
hand resulting in visual evidence of contact. This contact
mark is a physically accurate representation of the true (ac-
cumulated) contact between the hand and the object making
it the true ground truth (even methods like [6] suffer from
heat dissipation). We chose a bright green paint to enable
automatic segmentation thereby creating a gold standard
for contact evaluation.
Data Annotation: MANUS-Grasps also provides 2D and
3D hand joint locations along with hand and object segmen-
tation masks. We obtain the joint locations from Alpha-
Pose [21] followed by 3D triangulation and inverse kine-
matics [64]. We impose constraints to limit the degrees of
freedom and joint angles for the rotation of the bones. To
achieve temporal smoothness for the sequence, we apply
the 1C Filter [9] on the estimated parameters. To segment
the hand and object from the background, we use the Seg-
ment Anything Model (SAM) [35] followed by fitting an
Instant-NGP model [49] to extract a binary mask to ensure
multi-view consistency.

5. Experiments and Results
In this section, we show qualitative and quantitative results
from our method. Our goal is to evaluate both the MANUS-
Hand and the MANUS grasp capture method, compare with
existing methods, and ablate key design choices.

5.1. Evaluating MANUS-Hand

Figure 4. Qualitative comparison of MANUS-Hand with Live-
Hand [50] and TAVA [37]. It’s noteworthy that our renderings
closely resemble those of LiveHand and surpass TAVA in quality,
even in the absence of any components designed to enhance pho-
torealism.

We first show results and experiments related to
MANUS-Hand only. We quantitatively as well qualitatively
assess the visual quality of our hand model with the cur-
rent state-of-the-art method LiveHand [50] and TAVA [37].
Metrics, Dataset & Setup: We assess the visual quality

of our hand model using PSNR, SSIM, and LPIPS met-
rics (where higher scores indicate better performance) on
the Interhand2.6M dataset, as shown in Table 3. While
these metrics focus on visual quality, we note that they are
proxies for geometric quality as well, which is important
for grasp capture. For optimization, we used two subjects
from Interhand2.6M (Capture0 and Capture1), focusing on
the “ROM07-RT-Finger-Occlusions” sequence from the test
set. We allocate 75% of the data for training and use the re-
mainder for evaluation.
Quantitative Evaluation: MANUS-Hand is not specifi-
cally designed for photorealism since we leave out ambient
occlusion and shadow mapping and focus only on geomet-
ric accuracy. Despite this, our method is superior to TAVA
and on par with LiveHand. Furthermore, we evaluated our
method on our MANUS-Grasps dataset , as detailed in Ta-
ble 4, using a similar training and testing split of 3:1. Our
dataset is better lit than InternHand2.6M with fewer harsh
shadows resulting in significantly better performance of our
method. In conclusion, despite not being tailored for photo-
realism, our method demonstrates substantial potential for
application in photorealistic contexts.
Qualitative Evaluation: We conducted a qualitative com-
parison of our MANUS-Hand with TAVA [37] and Live-
Hand [50], as shown in Fig. 4. The quality of our render-
ings is superior to TAVA [37] and is on par with that of
LiveHand.

5.2. Evaluating Grasp Capture

Next, we evaluate our MANUS method for grasp capture.
In this paper, we assume that direct contact between the
hand and the object is the primary mode of grasping (we
ignore indirect grasping through tools). Therefore, the goal
of grasp evaluation is to objectively measure the accuracy
of contacts. We compare three methods: (1) a method that
uses MANO [58] to model hand grasps, (2) HARP [32],
and (3) our MANUS model. Please see the appendix for
implementation details.
Metric, Dataset & Setup: In our experiments, we use the
paint transfer method [31] to accurately record ground truth
accumulated contacts (see Section 4.3). After grasp com-
pletion, users are instructed to return to a canonical post-
grasp pose. In this pose, the green paint residue in the grasp-
ing hand is automatically segmented and 2D contact maps
are rendered from 10 different views using [49]. We then as-
sess the quality of grasps estimated by different methods us-
ing the Intersection over Union (IoU) and F1-score metrics.
All experiments use 15 sequences of our wet paint dataset.
For fairness, all methods used the same distance threshold
τ = 0.004 for contact estimation. For a fair comparison,
we subdivide the meshes of MANO and HARP from 778 to
49,000 vertices before estimating contact.

For generating contact masks in all methods, we utilize
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the ’gray’ color map [28] on the distance map. The contact
masks for MANUS are rendered using [33], while for the
other two frameworks, they are rendered using the emission
shader in Blender. It’s noteworthy that MANUS consis-
tently outperforms the others in the contact metric across
all three subjects.

Method Subject1 Subject2 Subject3

mIoU ↑
MANO 0.161 0.135 0.208
HARP 0.173 0.148 0.224
Ours 0.206 0.152 0.275

F1 score ↑
MANO 0.270 0.228 0.338
HARP 0.28875 0.2474 0.361
Ours 0.335 0.251 0.424

Table 2. Comparison of MANUS grasp capture approach with
MANO and HARP on contact metric. Note that, we perform con-
sistently better in terms of both metrics.

Qualitative Evaluation: Figure 6, we present a qualitative
comparison of our contact results against those obtained us-
ing MANO and HARP. Our method shows a more accurate
representation of the contact area, closely matching the ac-
tual contact masks, unlike the over-segmentation observed
in MANO and HARP methods. Although our method out-
performs others, we note that there is still significant room
for improvement on our dataset for future methods to ad-
dress. We also show qualitative results in in Fig. 5 and
benchmark our MANUS-Hand and object model on our
dataset in Tab. 4.

5.3. Ablation Study

In Table 5 it is demonstrated how the quality of contacts
diminishes as the number of camera views decreases. This
finding is significant as it confirms our hypothesis that dense
camera views are essential for accurate contact representa-
tion, helping to prevent occlusion scenarios. Please see the
appendix for other ablations.

6. Conclusion

In conclusion, our method, MANUS, introduced a novel ar-
ticulated 3D Gaussians representation, which successfully
bridge the gap between the accurate modeling of contacts in
hand-object interactions and the limitations of current data
capturing techniques. The creation of MANUS-Grasps,
with its extensive multi-view data from 53 cameras, of-
fers an unprecedented level of detail and accuracy, cover-
ing a wide range of scenes, subjects, and frames. Overall,
MANUS demonstrates remarkable potential for advancing

Method PSNR ↑ SSIM ↑ LPIPS ↓ Test time (s) ↓
TAVA 22.85 0.983 0.099 11.00

LiveHand 31.16 0.9818 0.0278 0.022
Ours 26.32 0.9872 0.068 0.049

Table 3. Comparison of MANUS-Hand on InterHand2.6M [46]
dataset with LiveHand [50].

Categories PSNR ↑ SSIM ↑ LPIPS ↓
Mugs 43.08 0.999 0.002

Bottles 38.17 0.997 0.008
Fruits 39.57 0.998 0.005

Utensils 38.25 0.994 0.009
Misc 38.79 0.995 0.008

Colored 42.38 0.999 0.004
Bags 38.44 0.994 0.011
Jars 40.66 0.999 0.005

Books 36.17 0.998 0.015
Tech 38.81 0.995 0.007

Hand1 28.34 0.995 0.031
Hand2 29.94 0.998 0.029
Hand3 29.71 0.997 0.027

Table 4. Benchmarking MANUS-Hand and MANUS-Object on
MANUS Grasp dataset.

Camera Views Subject1 Subject2 Subject3

mIoU ↑
5 0.147 0.140 0.214
10 0.164 0.145 0.256
20 0.176 0.142 0.261

Ours (53) 0.206 0.152 0.275

F1 score ↑
5 0.244 0.235 0.343
10 0.266 0.242 0.401
20 0.271 0.240 0.410

Ours (53) 0.335 0.251 0.424

Table 5. Ablation of how contact metric degrades as camera views
are reduced.

the fields of robotics, mixed reality, and activity recogni-
tion, offering new possibilities for the development of more
agile and accurate robotic systems and enhanced virtual in-
teraction experiences.
Limitations: While our focus in this paper was on accurate
contact estimation, we did not focus on multiple hands or
non-rigid objects. We also observe that there is room for
improvement in the metrics we propose for future work.
Acknowledgements: This work was supported by NSF
CAREER grant #2143576, a gift from Meta Reality Labs,
NSF CloudBank, and an AWS Cloud Credits award.
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Figure 5. Here we show our contact estimation results on novel views for a variety of objects. We show both instantaneous and accumulated
contacts for the hand in a canonical pose. Best viewed zoomed.

Figure 6. Contact Comparisons: We compare accumulated contacts of MANUS with that of MANO and HARP on ground truth contacts
from MANUS Grasps dataset. It’s visible that our contacts are far more accurate and closer to the actual ground truths.
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Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, and Zhaoyang Lv. Neural 3d
video synthesis. CoRR, abs/2103.02597, 2021. 2

[39] Yuwei Li, Longwen Zhang, Zesong Qiu, Yingwenqi Jiang,
Nianyi Li, Yuexin Ma, Yuyao Zhang, Lan Xu, and Jingyi Yu.
Nimble: a non-rigid hand model with bones and muscles.
ACM Transactions on Graphics (TOG), 41(4):1–16, 2022. 2

[40] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:

Neural free-view synthesis of human actors with pose con-
trol. ACM Trans. Graph.(ACM SIGGRAPH Asia), 2021. 2

[41] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan,
Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi.
Hoi4d: A 4d egocentric dataset for category-level human-
object interaction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
21013–21022, 2022. 2, 3

[42] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, 2019. 2

[43] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 2, 3

[44] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 2

[45] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[46] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2. 6m: A dataset and base-
line for 3d interacting hand pose estimation from a single rgb
image. In European Conference on Computer Vision, pages
548–564. Springer, 2020. 3, 5, 7

[47] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
rgb-d sensor. In Proceedings of International Conference on
Computer Vision (ICCV), 2017. 3

[48] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. Ganerated hands for real-time 3d hand
tracking from monocular rgb. In Proceedings of Computer
Vision and Pattern Recognition (CVPR), 2018. 3

[49] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 2, 6, 13

[50] Akshay Mundra, Jiayi Wang, Marc Habermann, Christian
Theobalt, Mohamed Elgharib, et al. Livehand: Real-time
and photorealistic neural hand rendering. arXiv preprint
arXiv:2302.07672, 2023. 2, 5, 6, 7

[51] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[52] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In ICCV, 2021. 2

10



[53] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
2021. 2

[54] Tu-Hoa Pham, Nikolaos Kyriazis, Antonis A Argyros, and
Abderrahmane Kheddar. Hand-object contact force estima-
tion from markerless visual tracking. IEEE transactions
on pattern analysis and machine intelligence, 40(12):2883–
2896, 2017. 2

[55] Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard,
Vladislav Golyanik, and Christian Theobalt. Html: A para-
metric hand texture model for 3d hand reconstruction and
personalization. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XI 16, pages 54–71. Springer, 2020. 2

[56] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 13

[57] Grégory Rogez, James S Supancic, and Deva Ramanan. Un-
derstanding everyday hands in action from rgb-d images. In
Proceedings of the IEEE international conference on com-
puter vision, pages 3889–3897, 2015. 3

[58] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), 2017. 2, 4, 6, 12

[59] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 5

[60] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 5

[61] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F
Fouhey. Understanding human hands in contact at inter-
net scale. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9869–9878,
2020. 3

[62] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In CVPR, 2017. 3, 5

[63] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances in
Neural Information Processing Systems. Curran Associates,
Inc., 2019. 2

[64] Srinath Sridhar, Antti Oulasvirta, and Christian Theobalt. In-
teractive markerless articulated hand motion tracking using
rgb and depth data. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2013. 6, 13

[65] Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan
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A. Ablation Study
A.1. MANUS-Hand

Initialization of Skinning Weights: We observe that the
choice of method used to initialize skinning weights signif-
icantly influences the performance of our hand model. As
demonstrated in Fig. 8(a), initializing skinning weights di-
rectly onto Gaussians using a nearest neighbor approach, as
opposed to using a voxel grid, leads to an issue. This ap-
proach causes the unstructured Gaussians to shift towards
an unrelated bone. Consequently, this misalignment results
in artifacts, where skinning weights are incorrectly allo-
cated to the wrong bone, causing the position to be asso-
ciated with the incorrect bone. The impact of this method
of initialization is presented both quantitatively and qualita-
tively in Tab. 6 and Fig. 7.
Ablation on LPIPS loss: We observed that LPIPS loss
helps a lot in realistic renderings and maintaining consis-
tency across views. Figure 7 and quantitatively at Table 6,
we demonstrate that LPIPS metric enhances the overall vi-
sual quality of our hand model.

A.2. MANUS Grasp Capture

Effect of the number of Gaussians in contact map ren-
dering: We show in Figure Fig. 8(b) that the quality of ac-
cumulated 2D contact maps deteriorates when the number
of Gaussians is reduced. Therefore, in our experiments, we
make sure to densely initialize Gaussians for both objects
and hands.

B. Implementation Details
Our method was implemented in Python using the PyTorch
Lightning [19] framework. All experiments were conducted

Method PSNR ↑ SSIM ↑ LPIPS ↓ Test time (s) ↓
w/o grid 26.108 0.987 0.0729 0.0082
w/o lpips 25.92 0.986 0.074 0.043

Ours 26.328 0.9872 0.0688 0.043

Table 6. Ablation on weight initialization approach and choice
of LPIPS loss. Our design approach improve all visual quality
metrics.

Figure 7. Hand Ablation: We perform ablation on the initializa-
tion of the skinning weights in the grid as well as the choice of
using LPIPS loss function. Clearly our approach is better in terms
of visual appearance.

Figure 8. Here in (a) we show how initializing MANO weights
without voxel grid allows the unstructured Gaussians to move er-
rtically. In (b), we show the affect on accumualated 2D contact
renderings with change in the number of Gaussians.

using a single Nvidia RTX3090 GPU with gradient accu-
mulation for 4 iterations. The weights of the different loss
function terms - α, β, γ and δ - were experimentally deter-
mined and set at values of 0.7, 0.1, 0.1, and 0.1, respectively.
In all our experiments, we chose a grid size of 256x160x142
around the canonical hand skeleton for storing the skinning
weights initialized from MANO [58]. MANUS-Hand is ini-
tialized with 30K Gaussians per bone, amounting to 900K
Gaussians in total. After training, this number is pruned and
filtered down to approximately 300K.

C. Data capture and Pre-processing of
MANUS Grasps

C.1. Bone length estimation

We first use the [21] to acquire 2D keypoints for every frame
and view. These keypoints are then triangulated into 3D
keypoints using the [1]. With these triangulated keypoints,
we determine the bone lengths for each subject. Specif-
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ically, we average the 3D keypoints across all grasp se-
quences and then adjust the length of the skeleton accord-
ingly.

C.2. Inverse Kinematics

Figure 9. The left figure shows the backprojected 3D keypoints
predicted by AlphaPose [21]. The right figure shows the fitted
hand skeleton using inverse kinematics.

To obtain the joint angles of the hand and its global ori-
entation we use an optimization-based approach inspired
by [64]. Specifically, we treat the joint angles, global ro-
tation and global translation as optimization parameters Θ.
We then perform a forward kinematics (Fk(Θ)) pass which
takes the joint angles as input and outputs 3D joint loca-
tions. As the forward pass is differentiable, we apply gradi-
ent descent to obtain the optimal parameters that explain the
given 3D joint positions. We minimize the L2 loss between
predicted and target keypoints:

Lkyp = ||Fk(Θ)− x||2 (3)

where x are the 3D joint locations predicted by Alpha-
Pose [21]. We also impose anatomical constraints (See Fig-
ure 10) and joint angle limits by applying a hinge loss as
limit loss Llim as follows:

Llim =

|Θ|∑
i=1

((max(0, ||Θi − lih||2) + max(0, ||lil −Θi||2))

(4)
where ll and lh are the lower and upper limits on joint an-
gles, respectively. The final loss function is given by:

L = Lkyp + λLlim (5)

We use Adam [34] as our choice of optimizer with a learn-
ing of 0.001. We set the value of λ to be 1 in all our ex-
periments. We also initialize the current frame based upon
previous frame, this helps in faster convergence and helps
in maintaining temporal consistency. Once we get the joint
angles, we apply one euro filter [9] to the joint angles to
smoothen any high-frequency jitter in the sequence. We
show illustration of this process in Fig. 9.

Figure 10. Figure showing the degrees of freedom of rotation for
each of the joint.

C.3. Segmentation

For every segmentation task, we employ a combined ap-
proach utilizing InstantNGP [49] and SAM [35]. Initially,
the scene is segmented using the text-based SAM technique.
Following this, we obtain a segmentation mask that main-
tains consistency across multiple views using InstantNGP.
If the segmentation masks are found to be inadequate due
to inaccurate predictions from the text-based SAM, the pro-
cess is repeated until satisfactory results are achieved.

D. MANO and HARP fitting

We begin by estimating the shape and scale parameters of
the MANO model for each subject. This process starts
with acquiring the mesh from [49], which we process us-
ing MeshLab and Blender software. Subsequently, we em-
ploy an optimization framework akin to that used in [26],
focusing on optimizing all MANO parameters, including
angle, translation, shape, and scale. This optimization in-
corporates both keypoint loss (3) and point-to-surface loss
[56]. For subsequent sequences, we maintain the previously
determined scale and shape parameters constant, while opti-
mizing only the angles and translations, using only keypoint
loss. We initialize the previously optimized parameters as
our new parameters to improve the convergence rate.

To attain a more precise hand geometry based on multi-
view images, we follow HARP [32] using local displace-
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ment to model the personalized hand shape. Leveraging the
differentiable render techniques, we optimize the MANO
mesh based on the losses in [32].

E. MANUS Dataset Details
Dataset Release: We plan to release complete dataset in
the future including the estimated contacts using MANUS
Grasp Capture framework.
Grip Aperture: The grip aperture [10] refers to the dis-
tance between the thumb and fingers when grasping or hold-
ing an object. It’s an important concept in fields like er-
gonomics, rehabilitation, and robotics. Here in Fig. 11, we
plot the change of grip aperture with change in timestep for
our dataset.

Figure 11. Variation of grip aperture with change in timestep while
grasping.
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