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Figure 1. Our method reconstructs high-fidelity garment geometry and appearance from input monocular video.

Abstract

Dynamic garment reconstruction from monocular video is001
an important yet challenging task due to the complex dy-002
namics and unconstrained nature of the garments. Re-003
cent advancements in neural rendering have enabled high-004
quality geometric reconstruction with image/video super-005
vision. However, implicit representation methods that use006
volume rendering often provide smooth geometry and fail007
to model high-frequency details. While template recon-008
struction methods model explicit geometry, they use ver-009
tex displacement for deformation which results in artifacts.010
Addressing these limitations, we propose NGD, a Neural011
Gradient-based Deformation method to reconstruct dynam-012
ically evolving textured garments from monocular videos.013
Additionally, we propose a novel adaptive remeshing strat-014
egy for modeling dynamically evolving surfaces like wrin-015
kles and pleats of the skirt, leading to high-quality recon-016
struction. Finally, we learn dynamic texture maps to cap-017
ture per-frame lighting and shadow effects. We provide ex-018
tensive qualitative and quantitative evaluations to demon-019
strate significant improvements over existing SOTA methods020
and provide high-quality garment reconstructions.021

1. Introduction022

Recent advances in computer vision have enabled large-023
scale digitization of 3D garments for immersive AR/VR024

platforms, revolutionizing Social Media, E-Commerce, 025
Gaming, and Entertainment industries. The sheer diver- 026
sity, complex dynamics, and intricate articulations make 027
garment digitization and modeling significantly challeng- 028
ing. Unlike conventional digital garment creation methods 029
involving artists, which demanded expertise, time, and la- 030
bor, deep learning has enabled garment digitization from 031
images and videos [28, 33, 34, 37, 47]. Multi-view video 032
inputs are used to obtain high-quality garment digitization, 033
but they often require expensive calibrated multi-camera se- 034
tups [19, 27, 34, 47, 50], and hence difficult to scale. In 035
comparison, monocular video inputs are easy to acquire and 036
scalable with an abundance of “in the wild” videos avail- 037
able. Nevertheless, garment digitization from monocular 038
video needs to reconstruct the dynamically evolving gar- 039
ment geometry and appearance while addressing the clas- 040
sical challenges like modeling varying garment sizes, non- 041
rigid deformations due to body shapes and poses, and the 042
diverse topology of garments. 043

Advancements in differentiable rendering have made it 044
possible to achieve high-quality geometry reconstruction 045
from monocular videos. [4, 9, 14, 26, 33, 34]. The exist- 046
ing approaches for garment reconstruction can be divided 047
into implicit surface deformation methods [9, 33] and ex- 048
plicit template deformation methods [4, 26]. SCARF [9] is 049
one of the first works to use implicit surface representation 050
using Neural Radiance Fields (NeRF)[30]; nevertheless, the 051
geometric quality is limited by constraints inherent to vol- 052
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ume rendering approaches. REC-MV [33] addresses this053
limitation by optimizing for both explicit feature curves and054
implicit garment surfaces. However, the use of implicit rep-055
resentations adds an overhead of surface extraction and the056
resulting surface is smooth, losing out high-fidelity surface057
details. Pergamo[4] and Dgarments[26] deform garment058
templates with SMPL interpolated skinning weights super-059
vised via differentiable rendering. However, these methods060
rely on a fixed template constraining its ability to model dy-061
namically varying topology, like the pleats of the skirt. Ad-062
ditionally, direct vertex displacement via differentiable ren-063
dering causes abrupt, sharp local changes and requires ad-064
ditional regularisers for smoothening undesirable local de-065
formations. This often results in an over-smoothed surface066
and fails to capture high-frequency details.067

To address the above limitations, we develop a Neu-068
ral Gradient Based Deformation method to reconstruct dy-069
namic garments from input monocular video. Our method070
models appearance and geometry separately, as learning071
them together might result in appearance being corrected to072
compensate for geometric inaccuracies and vice versa. We073
propose a novel deformation parameterization that decom-074
poses surface deformations into a frame-invariant compo-075
nent representing the global shape and a frame-dependent076
component modeling the pose-specific local surface defor-077
mations of the base garment mesh. Specifically, the de-078
formation parameterization adopts NJF [1] to model gar-079
ment reconstruction, which learns a local Jacobian field080
defined on the garment surface followed by a Poisson-081
solve to predict the global garment deformation in canonical082
space. This addresses the aforementioned limitation of ex-083
isting template-based methods. These canonical garments084
are skinned to model garment reconstruction to map to the085
corresponding input monocular views and optimized via a086
differentiable renderer [22]. While there are existing ap-087
proaches that combine NJF with a differentiable renderer,088
[10], we develop a gradient-based deformation approach089
to model from the monocular input video. Unlike existing090
methods that directly optimize with colored images, which091
can result in inaccuracies due to ambiguities between shad-092
ows and textures, we use diffuse garment images. Addi-093
tionally, we design an adaptive remeshing strategy to iter-094
atively increase the mesh resolution in the regions of high-095
frequency geometrical details. This enables regions with096
fine details to be modeled by higher mesh resolutions and097
also freely deform the template to model extremely loose098
garments. Finally, we learn appearance via dynamic texture099
maps at each frame to capture lighting and shadow effects.100
Figure 1 visualize the high-fidelity dynamic textured gar-101
ment reconstructed by our method from an input monocular102
video. In summary, our key technical contributions are as103
follows:104

• We propose a novel method to reconstruct dynamically105

Figure 2. Method overview: Given an input video, we reconstruct
dynamically evolving textured garment meshes using our Geome-
try and Appearance Reconstruction module.

evolving textured garments from monocular videos. 106
• Our novel deformation parameterization combined with 107

the novel adaptive remeshing enables modeling extremely 108
loose garments with high-frequency details. 109

• We provide qualitative and quantitative comparisons with 110
existing methods to show significant improvements, es- 111
pecially on loose garments. 112

2. Related Works 113

A large number of existing methods attempted clothed hu- 114
man reconstruction from single or multi-view images [15– 115
17, 35, 43, 46, 48] or videos [3, 12, 13, 19, 32, 36, 41, 42], 116
albeit cannot extract garment mesh separately. On the 117
other hand, several existing garment reconstruction meth- 118
ods [5–7, 18, 24, 25, 28, 29, 31, 49] recover garments from 119
monocular image. However, these single-image reconstruc- 120
tion methods require supervised training on a large dataset. 121
Please refer to the supplementary for a detailed discussion 122
of these methods. 123

Multiview images can recover garments in a self- 124
supervised manner. Diffavatar [27] uses sewing patterns 125
to represent garments and obtain simulation-ready garments 126
from multiview images. Gaussian Garments [34] combines 127
physics simulation with Gaussian splats [20] to obtain phys- 128
ically plausible garments from multiview inputs. The ren- 129
dering captures fine details down to the level of furs. While 130
multiview reconstruction provides rich garment digitization 131
solutions, the multiview camera setups are generally expen- 132
sive, hence monocular videos provide a cheap, scalable al- 133
ternative. 134

DeepCap [14] is one of the pioneering approaches to re- 135
constructing loose garments from monocular video. How- 136
ever, it considers the first frame as a template, requir- 137
ing expensive preprocessing including 3D scanning of a 138
clothed human, segmentation, and reconstruction of the gar- 139
ment and human separately. Methods like Pergamo [4] de- 140
form garment templates using SMPL-interpolated skinning 141
weights, followed by rendering loss optimization. [9] in- 142
tegrates a parametric body model with [30] representation 143
for garment reconstruction; however, the geometric qual- 144
ity is constrained by NeRF’s inherent limitations. REC- 145
MV [33] uses implicit-explicit representation to achieve ge- 146
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Figure 3. In Geometry Reconstruction Module we introduce a novel deformation parameterization to deform a base mesh MB to desired
target mesh via learning a Jacobian Field guided by differentiable rendering supervision from input monocular video.

ometrically consistent and temporally coherent garment re-147
construction. Despite this, they lack detailed textures, and148
their use of initial implicit garment representations leads to149
smoothing effects, compromising high-fidelity detail. The150
recent method, DGarments [26], achieves state-of-the-art151
performance in geometry reconstruction from monocular152
video by introducing a multi-hypothesis deformation mod-153
ule. However, they fail to large deformations and struggle154
with loose clothing.155

3. Method156

We present NGD, a novel approach for reconstructing dy-157
namically evolving textured garment meshes from given in-158
put monocular video. Our method is composed of geom-159
etry and appearance reconstruction modules, as shown in160
Figure 2. As part of our geometry reconstruction module,161
we introduce a novel deformation parameterization over a162
base garment mesh to accurately capture and aggregate gar-163
ment deformations across input frames. This parameteriza-164
tion decomposes deformations into a frame-invariant com-165
ponent representing the global canonical shape and a frame-166
dependent component modeling the pose-specific local sur-167
face deformations of the garment. To further improve ge-168
ometric fidelity, we also propose a novel Gradient-Based169
Remeshing Strategy subsubsection 3.1.1, which adaptively170
refines the mesh resolution in regions exhibiting high cur-171
vature thereby facilitating the precise modeling of intricate172
details, such as wrinkles and folds. Our appearance re-173
construction module subsection 3.2 learns garment appear-174
ance by learning a frame-invariant base texture map and a175
frame-dependent dynamic texture map that captures the vi-176
sual characteristics of the garments.177

3.1. Geometric Reconstruction Module 178

The base garment mesh MB is a 2-manifold embedded in 179
3D Euclidean space R3. Let V := {vi ∈ R3}Ni=0, F := 180
{fj ∈ N3}Mj=0 and E := {el ∈ N2}Ll=0 be the vertices, 181

faces and edges of the mesh MB respectively. We sep- 182
arately model the global deformations capturing garment- 183
specific design features (such as collars, and necklines) as 184
well the local dynamic deformations (such as wrinkles) on 185
MB in T-pose at every time-frame. To achieve this, we 186
find a mapping function Φt that transforms the base mesh 187
MB to a desired mesh M̃t in canonical space (T-pose) that 188
captures these dynamic deformations at each time-frame t. 189
This mapping function Φt : RN×3 → RN×3 is approxi- 190
mated by optimizing for Jacobian fields and using Poisson 191
Solve to obtain deformed mesh vertices [1]. However, un- 192
like NJF [1] and TextDeformer [10] which optimizes for a 193
single static mesh, we need to approximate a mapping func- 194
tion Φt corresponding to every frame. 195

Thus, given input video frames I = {It}Tt=0, the goal is 196
to find the optimal deformation function Φt at every frame 197
by solving the following equation in the least square sense: 198

Φ∗
t = min

Φt

∑
fj∈F

|fj | ∥∇iΦt − Jj∥2, (1) 199

where ∇ is the gradient operator. The function Φ∗
t ide- 200

ally maps the base garment MB to target mesh M̃t. The 201
solution to the above equation Equation 1 is obtained by 202
solving a Poisson system [1]. This mapping function Φ∗

t is 203
indirectly estimated by optimizing for the Jacobians JF

t to 204
obtain the canonical mesh MC

t , which is the closest approx- 205
imation of the desired mesh M̃t. 206
Intrinsic Deformation Fields: Building on the aforemen- 207
tioned Jacobian Field formulation, we propose a novel de- 208
formation parameterization for dynamic garment modeling 209
by splitting JF

t into two sub-fields, a frame-invariant static 210
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Figure 4. Overview of our gradient-based adaptive remeshing method: Performing edge selection, followed by remeshing operations
for generating remeshed meshs with high frequency details.

Jacobian Field JS ∈ RM×3×3, and a frame-specific dy-211
namic Jacobian Field JD

t ∈ RM×3×3. JS captures the212
global garment shape specific to the input video garment213
style. This static field is defined at each face center of the214
base mesh, initialized as an identity matrix, and is optimized215
directly across all frames. The dynamic field JD

t captures216
the pose-specific surface deformation at each image frame217
and is predicted by a neural network fG.218

The Figure 3 shows how these two Jacobian Fields219
model per-frame deformations in the canonical space. The220
neural network fG = fΘ ◦ fφ is composed of hash-grid en-221
coder fφ and an MLP fΘ. At every time-step t, we use face222
centers FC , face normals FN of the reposed static canon-223
ical garment mesh, and pose information for conditioning224
the neural network. Conditioning with the pose defined by225
the joint angles θt prevents overfitting to the input view.226
We use the PCA (Principle Component Analysis) for en-227
coding the pose parameters as γ(θt). More details about228
the pose encoding are provided in the Suppl. Finally, the229
MLP takes as input latent encoding of FN , FC and γ(θt)230
from fφ to predict JD

t . The final Jacobian field is defined231
as JF

t = JS + JD
t . The final Jacobian field JF

t is solved232
via the Poisson system to obtain canonical garment MC

t en-233
compassing both global garments specific as well as local234
surface deformations.235

236
Skinning Transformation: The canonical garment MC

t is237
subsequently skinned to obtain the reposed garment for ev-238
ery time-frame MP

t defined as follows:239

MP
t = S(MC

t , βt, θt,W ) (2)240

where S(.) is the skinning function, βt and θt are the241
shape and pose parameters, and W is the garment skinning242
weights. This reposed mesh is rendered to obtain diffuse243
and depth images of the garment. The pseudo ground truth244
extracted from the input images guides the optimization of245
the Jacobian Field JS and the neural network fG parame-246
ters via a differentiable renderer. Figure 3 provides a visual247

overview of our geometry reconstruction module. 248
249

Local Minima: The optimization is often trapped in local 250
minima while minimizing the local rendering losses. To 251
address this, we introduce a novel exponentially decaying 252
noise applied to the vertices of the final skinned mesh itera- 253
tively. This noise encourages the model to prioritize global 254
geometry in the initial iterations, preventing early overfit- 255
ting to local details. This heuristic adds no computational 256
overhead while significantly improving the reconstruction 257
quality of loose garments (refer to supplementary for de- 258
tailed discussion). 259

260
Losses: The normal maps Ingt, part segmentation maps Isgt, 261
and depth maps Izgt extracted from input images serve as 262
pseudo-ground truth to optimize the reconstruction module. 263
Instead of using normal maps, we use diffused maps Idgt ob- 264
tained by projecting light in the input camera view direction, 265
for supervision. Thus, the rendering loss is defined as: 266

Ldiffuse = H((Isgt ⊙ Idpred), I
d
gt) + S((Isgt ⊙ Idpred), I

d
gt)) (3) 267

where ⊙ is the element-wise multiplication, H is the Hu- 268
ber Loss, S is the SSIM loss and Idpred is the diffuse images 269
calculated from the input of the predicted mesh normals. 270

The regularization loss, Lreg ensures continuous surface 271
consistency after deformation. The per-triangle Jacobians 272
Jj ∈ R3×3 of the final intrinsic field JF

t is optimized to be 273
close to the identity matrix I ∈ R3×3, defined as: 274

Lreg =

M∑
j=1

∥Jj − I∥22 (4) 275

Finally, we use a depth supervision loss, Ldepth, calcu- 276
lated using the depth-ranking scheme proposed in [38]. A 277
modified segmentation loss Lmask is used for supervision 278
from segmentation masks (more detail in Suppl.). The total 279
geometric reconstruction loss Lgeo is defined as: 280

Lgeo = λ1Lrender + λ2Lmask + λ3Lreg + λ4Ldepth (5) 281
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Figure 5. Overview of our appearance reconstruction module.

3.1.1. Gradient Based Adaptive Remeshing282

We select a set of edges Es, based on their gradients from283
rendering loss Ldiffuse and then apply remeshing operations,284
as illustrated in Figure 4.285
Edge Selection: Out of all edges E in the base mesh286
MB , we select a subset Es ⊂ E for remeshing. The287
image-space gradient at each pixel p is defined as G(p) =288
∇Id

pred(p)
Ldiffuse Equation 3 where Idpred(p) is the predicted289

image. These pixel gradients are aggregated over raster-290
ized faces Π(fj) for each face fj ∈ F, resulting in per291
rasterized face gradient values G(Πraster(fj)). These val-292
ues are then aggregated over all iterations and projected293
onto the base mesh MB , yielding a per-face gradient value:294

G(fj) =
ΣG(Πraster(fj))
|Πraster(fj)| . Next, we select the top quantile295

of faces Fω = {fj | ∥G(fj)∥ ≥ quantileω (∥G(fj)∥)} for296
a percentile ω of triangle face. Subsequently, we prune297
all faces Fδ = {fj | L(el) ≥ δlength, ∀el ∈ E(fj)} whose298
edge lengths fall below a certain threshold δlength. The selec-299
tion threshold and pruning criteria evolve over epochs over300
a linearly decaying function, ensuring a balance between301
preserving details and preventing excessive refinement. Fi-302
nally, we select all edges Es part of all the final selected303
faces Fδ .304
Remeshing: Subsequently, we perform edge splitting and305
edge flipping operations on Es, adopting the remeshing306
strategy proposed in [8]. During the remeshing process,307
it is crucial to handle face flips and degenerate triangles.308
Finally, we clean up the mesh to remove degenerate faces309
and merge close vertices. This yields the modified topology310
base mesh MB

r . Next, we need to recomputation of all mesh311
attributes. After remeshing, the mesh attributes are recom-312
puted via k-NN interpolation. The static Jacobian field JS ,313
Adam optimizer moments m1,m2, and skinning weights314
W are interpolated to ensure smooth training. Please refer315
to Suppl. for more information.316

3.2. Appearance Reconstruction Module317

Our goal is to learn a dynamic texture map corresponding318
to the reposed mesh at each frame. The detailed overview319

of texture recovery is provided in Figure 5. We obtain the 320
base UV coordinates MUV from MB

r using [23]. These 321
UV coordinates map the color information from a texture 322
map to the mesh faces. Similar to geometry reconstruc- 323
tion, we learn two texture components. A frame-invariant 324
static texture map TS ∈ Rq×q×3, and a per-frame dynamic 325
texture map TD

t ∈ Rq×q×3, where q is the texture im- 326
age dimension. The static texture TS is optimized directly, 327
while the dynamic texture TD

t is predicted by a neural net- 328
work. At every time-step t, the MLP fT is conditioned 329
on hash encoded UV coordinates fφ(MUV ), and pose pa- 330
rameters γ(θt) to predict TD

t . The final Texture map is 331
obtained as TF

t = TS + TD
t . For better generalization, 332

we employ a smooth annealing training strategy, inspired 333
by [44], wherein we introduce linearly decaying Gaussian 334
noise to the pose parameters, γ(θt). This approach effec- 335
tively mitigates overfitting and improves generalizability in 336
novel views synthesis. At each iteration, the posed gar- 337
ment mesh MP

t from the geometry module is rendered with 338
color from texture TF

t , to produce colored images Icpred. 339

The static texture TS and the neural network parameters 340
of fT are optimized via differentiable rendering with the 341
following two losses: Lcol = ||(Isgt ⊙ Icpred), I

c
gt||1 and 342

Lssim = SSIM(Isgt ⊙ Icpred), I
c
gt. 343

The final loss is defined as: 344

Ltex = α1Lcol + α2Lssim (6) 345

4. Experiments & Results 346

4.1. Implementation Details 347

Our proposed method is implemented in PyTorch with 348
NVDiffrast [22] as the core differentiable rasterizer. The 349
primary training for our method was conducted on a single 350
NVIDIA RTX 4090 GPU, for both geometry and appear- 351
ance reconstruction. Each sequence of 100 frames takes ap- 352
proximately 2.5 hours to train including texture recovery. 353
Both modules incorporate a fixed-epoch warm-up phase, 354
during which only the static deformation field JS and static 355
texture map TS are optimized. After the warm-up phase, 356
the dynamic deformation field JD

t and dynamic texture map 357
TD
t are introduced for joint optimization. Adaptive remesh- 358

ing is performed at fixed intervals throughout the optimiza- 359
tion process. 360

4.2. Experimental Setup 361

We evaluate and compare our method against recent State- 362
Of-The-Art (SOTA) approaches on two tasks: 3D sur- 363
face reconstruction and novel view synthesis. Our evalu- 364
ation spans five sequences from a modified 4D-Dress [39] 365
dataset, along with two additional datasets [2, 33], select- 366
ing two sequences from each to demonstrate robustness. 367
We provide quantitative comparisons for both tasks on the 368
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Figure 6. Qualitative comparison where our method faithfully reconstructs high-frequency details like tiny wrinkles and folds, closer to
GroundTruth in comparison to SCARF [9] and DGarments [26] on 4D-Dress dataset [39].

Table 1. Quantitative evaluation on geometry reconstruction on 4D-Dress dataset [39] using Chamfer Distance (CD) and Normal Consis-
tency (NC) and comparison with different methods.

Chamfer Distance L2 × 103 ↓ Normal Consistency ↑
Method 123 148 169 185 187 Avg 123 148 169 185 187 Avg

SCARF 8.622 - 6.507 2.423 3.261 5.203 0.915 - 0.872 0.837 0.753 0.844
DGarment 0.076 0.863 0.154 0.431 1.722 0.649 0.904 0.755 0.872 0.856 0.777 0.833
Ours 0.050 0.660 0.127 0.393 0.923 0.431 0.934 0.766 0.891 0.879 0.794 0.853
w/o remeshing 0.053 0.672 0.129 0.372 0.981 0.441 0.932 0.762 0.887 0.878 0.790 0.850
w normals 0.195 0.931 0.278 0.535 1.205 0.554 0.908 0.755 0.866 0.853 0.778 0.832

4D-Dress dataset [39]. Additionally, we provide qualita-369
tive comparisons for 4D-Dress dataset for both tasks across370
all datasets. To assess the effectiveness of our model, we371
perform comparisons with the following SOTA methods -372

REC-MV [33], SCARF [9], and DGarment [26]. Finally, 373
we provide extensive ablation studies to analyze our design 374
choices. Please refer Suppl. for Dataset specifications and 375
implementation details. 376
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Figure 7. Qualitative comparison of geometric reconstruction obtained by our method with SCARF [9] and REC-MV [33] on People
Snapshot [2] dataset. Our method faithfully reconstructs high-frequency details like tiny wrinkles and folds.

Table 2. Quantitative evaluation on novel view synthesis with PSNR (PR), SSIM (SM), and LPIPS (LS) on different sequences.

Sequence 123 169 185 187

Method PR ↑ SM ↑ LS ↓ PR ↑ SM ↑ LS ↓ PR ↑ SM ↑ LS ↓ PR ↑ SM ↑ LS ↓
SCARF 43.02 0.992 0.018 45.01 0.992 0.026 33.82 0.986 0.025 25.32 0.918 0.0828
Ours 46.78 0.998 0.008 47.91 0.996 0.014 35.21 0.990 0.017 25.85 0.948 0.0395

Figure 8. Qualitative comparison of novel view synthesis.

Data Preprocessing: We utilize existing pre-trained vision377
models to obtain reliable priors. The SMPL pose and shape378

parameters and the camera estimations are obtained from 379
4DHumans [11]. Per-frame normal map, depth map, and 380
part-segmentation are recovered using a pre-trained human 381
foundation model Sapiens [21]. Finally, the base garment 382
mesh is obtained using BCNet [18]. 383

4.3. Results 384

Geometry Reconstruction : Quantitative evaluation, pre- 385
sented in Table 2 (rows [1-3]), demonstrates that our method 386
significantly outperforms the SOTA methods [9, 26] both 387
in terms of Normal Consistency (NC) as well as Chamfer 388
Distance (CD), averaged across all frames of a sequence. 389
We achieve a significantly improved alignment of the re- 390
constructed garment mesh with the ground truth mesh while 391
achieving consistent geometrical characteristics across dif- 392
ferent frames, leading to substantially lower average CD 393
values & higher average NC values across the sequence as 394
well as average overall sequences across the dataset. 395

A similar trend is evident in the qualitative evaluation 396
presented in Figure 6. The qualitative differences are more 397
significant for col [3 − 6] which contains loose clothing 398
such as gown, where we outperform the existing methods 399
while effectively mitigating major artifacts as shown in col 400
5. The qualitative results for additional datasets [2, 33] 401
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Figure 9. Ablative results on Gradient Based Adaptive Remeshing.

are shown in Figure 7 where we demonstrate our method’s402
ability to preserve high-frequency details superior to other403
SOTA methods. Overall, due to the implicit nature of rep-404
resentation, both SCARF [9] and REC-MV [33] fail to cap-405
ture high-fidelity details in the garments’ geometry. How-406
ever, DGarments [26] addresses this limitation by predict-407
ing a per-vertex displacement on the explicit mesh. Never-408
theless, their method is unable to model large deformations409
and hence struggles to handle loose garments effectively.410

Texture Reconstruction : We present quantitative eval-411
uations for novel view synthesis in Table 2, demonstrat-412
ing that our method consistently outperforms the existing413
state-of-the-art across all visual evaluation metrics, includ-414
ing PSNR, SSIM [40], and LPIPS [45]. This highlights the415
high fidelity and perceptual quality of our approach. Ad-416
ditionally, the qualitative comparisons in Figure 8 further417
reinforce the effectiveness of our method where in terms418
of the visual quality of the appearance, our method yields419
sharp textural details in comparison to SCARF [9].420

4.4. Ablation Studies421

Effect of Adaptive Remshing : The effectiveness of our422
adaptive remeshing strategy is demonstrated in Table 1423
(rows [3,4]). Although the CD & NC metrics show marginal424
quantitative degradation in case of without remeshing, we425
qualitatively demonstrate in Figure 9 that there is a signifi-426
cant drop in the fidelity of reconstructions (shown in row b),427
which is particularly leading to loss of complex folds and428
curved surfaces in comparison to reconstruction obtained429
with our full method (with remshing shown in row a). The430
remeshing process also effectively mitigates major artifacts431
by reducing the occurrence of larger triangles, as visible in432
the armpit region Figure 9 (see red circle). Furthermore,433
our remeshing strategy adaptively increases resolution in434
regions with higher geometric variation, enabling more pre-435
cise capture of details such as folds, pockets, and other fine436
cloth structures ( see Figure 9 square box), resulting in more437
accurate reconstructions.438

Normals vs Diffuse Image : We observe that normals439

Figure 10. Ablative results comparing use of diffuse image super-
vision vs normal supervision.

predicted (from [21]) in directions perpendicular to the 440
viewing angles exhibit ambiguity. To address this limita- 441
tion, we instead use diffuse images, which are basically 442
the normals’ components aligned with the viewing direc- 443
tion. Unlike standard normal maps, diffuse maps provide 444
softer constraints, enabling improved generalization across 445
frames. We provide empirical evaluation supporting the ef- 446
fectiveness of diffuse image supervision through ablation 447
studies summarized in Table 1 (rows [3,5]). Our results 448
consistently demonstrate that incorporating diffuse image 449
supervision leads to improved performance compared to 450
normal image supervision, further validating this design 451
choice. A similar trend is observed in the qualitative com- 452
parisons illustrated in Figure 10, where the use of diffuse 453
images results in improved geometric detail compared to 454
normal image supervision. 455

5. Conclusion and Future Works 456

We propose a novel gradient-based deformation method 457
to reconstruct dynamic textured garments from monocu- 458
lar video. We model both appearance and geometry and 459
provide high-quality garment reconstruction. Our novel 460
adaptive remeshing strategy further facilitates modeling 461
high-frequency details and extremely loose garments. We 462
demonstrate the superiority of our methods by showing im- 463
proved qualitative and quantitative evaluations with SOTA 464
methods. However, there is room for substantial improve- 465
ment. One limitation of using a mesh representation instead 466
of implicit functions is its susceptibility to self-intersection. 467
Developing a more robust method to actively prevent self- 468
intersections could significantly enhance results. Addition- 469
ally, our deformations are not fully synchronized with envi- 470
ronmental physics, sometimes leading to unrealistic move- 471
ments. A more realistic solution would incorporate physics 472
directly into the garment’s deformation representation, be- 473
yond simply adding it as a loss term. 474
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ard Pons-Moll, and Francesc Moreno-Noguer. Sm-499
plicit: Topology-aware generative model for clothed500
people, 2021.501

[7] Enric Corona, Guillem Alenyà, Gerard Pons-Moll,502
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