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Figure 1. Our proposed approach can reconstruct high-quality unoccluded image from a given occluded face image.

Abstract—Traditionally, video conferencing is a widely
adopted solution for remote communication, but a lack of
immersiveness comes inherently due to the 2D nature of facial
representation. The integration of Virtual Reality (VR) in
a communication/telepresence system through Head Mounted
Displays (HMDs) promises to provide users with a much better
immersive experience. However, HMDs cause hindrance by
blocking the facial appearance and expressions of the user. We
propose a novel attention-enabled encoder-decoder architecture
for HMD de-occlusion to overcome these issues. We also
propose to train our person-specic model using short videos
of the user, captured in varying appearances, and demon-
strated generalization to unseen poses and appearances of the
user. We report superior qualitative and quantitative results
over state-of-the-art methods. We also present applications of
this approach to hybrid video teleconferencing using existing
animation and 3D face reconstruction pipelines. Dataset is
available at this website.

Keywords-face image inpainting, facial de-occlusion, HMD
removal, virtual reality

I. INTRODUCTION

Globalization has led to an acute need for tele-interactions

for effective communication that has been further boosted

due to the current pandemic situation across the world. Tra-

ditionally, video conferencing is a widely adopted solution

for telecommunication, but it lacks realism due to the 2D

nature of facial representation. Virtual Reality (VR) based

telepresence system provides a better immersive experience

for remote conversation and collaboration. Nevertheless,

HMDs signicantly occlude the user’s face, hindering facial

appearance capture, including gaze and expressions. There-

fore, HMD removal in images is vital for improving the user

experience.

Traditionally, Analysis-by-Synthesis techniques for HMD

de-occlusion proposed in the literature [17] animate paramet-

ric face models such as 3DMMs [1] using features extracted

from an HMD occluded input image. However, such models

often generate overly smooth geometrical details and com-

promise the realism of facial appearance. On the contrary,

recent facial avatar-based models [11] achieve photorealistic

results for HMD de-occlusion. However, avatar modeling

methods require a large amount of calibrated multi-view

data of a single user in different poses and expressions for

avatar creation. [11] uses a setup consisting of 40 machine

vision cameras capable of synchronously capturing 5120 ×

3840 images at 30 frame per second (FPS). Thus, such

avatar creation is non-trivial and challenging for a large

user base to scale up. Additionally, it is a one-time process

for each user. Therefore, such parametric model or avatar-

based techniques have a signicant limitation: they lack the

user’s actual appearance during the interaction (i.e., unable

to model the everyday appearance of the user), hindering
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Figure 2. Failure cases of LaFIn [23]

user experience.

HMD de-occlusion problem can also be posed as a face

completion/inpainting problem. Existing face completion

methods in literature [18], [23] attempt to learn a single

inpainting network over a large training population, hoping

for good generalization on unseen face images. However,

these methods frequently suffer from issues like loss of

identity and fail to generalize with even minor variations

in head pose, as shown in Figure 2. Another set of methods

in [13], [18] uses a reference image along with the occluded

image to ll a masked region and preserve identity. However,

as shown in Figure 2, their work fails to generalize with

non-frontal head-poses. [13] requires additional information

(depth and mask) and does not generate the entire face (with

hairs, ears, and background), which hinders user experience.

The primary research challenge with the face comple-

tion/inpainting task comes from its ill-posed nature as a

signicant part of the face is occluded by HMD. Learning a

single common face de-occlusion network with the capabil-

ity to hallucinate diverse expressions in varying appearances

and head poses across a large set of human faces is difcult

to achieve. It is due to the broad space of facial geome-

try and appearance as well as the highly subjective way

of articulating expressions/emotions across individuals [2].

Additionally, in the context of VR teleconferencing appli-

cations, the desired solution should be scalable, requiring

minimal efforts and hardware at the user’s end. An additional

desired characteristic might be regarding integration ability

in a hybrid VR teleconferencing setup where users with only

video capability should also participate as in regular video

conferencing.

To overcome these challenges, we propose to tackle this

problem in a person-specic setting where we aim to train a

dedicated model for each user to learn user-specic appear-

ance, head-pose, gaze, and facial expression traits. The input

to our method is a video frame with HMD occluded face,

and our model generates a de-occluded plausible face by

removing the occlusion. To achieve this, we introduce novel

attention enabled encoder-decoder architecture and a novel

training strategy to train our person-specic model using

short videos (1-2 minutes) of the user. The video captures the

varying appearance of the user with a variety of head poses

and facial expressions without HMD occlusion. As a part

of our training strategy, we rst train the encoder-decoder

module (sans attention) on large face image datasets to learn

generic face appearance features. Subsequently, we netune

it on unoccluded user videos. Finally, we netune our full

model (encoder-decoder with attention) on the same training

data with synthetic HMD masks. It allows our model to learn

the person-specic facial geometry and expression traits

and help generate occluded areas with varying appearances,

poses, and expressions.

Our attention module allows the network to preserve

the high-frequency appearance and background details (like

hairs, wall texture, etc.) from the unoccluded part of the

input HMD occluded image while generating the plausible

facial appearance for the occluded part. Our novel mask-loss

function helps the model to emphasize the occluded region.

Figure 1 shows high-quality de-occlusion achieved by our

method. It is important to note that learning a person-specic

model is not equivalent to overtting on a specic user as

there is a signicant change in user appearance, background,

and lighting across sessions. Similar person-specic model

learning has been successfully explored in this context [11]

as well as another related context of egocentric frontal face

recovery [5]. We conduct thorough empirical evaluation and

report superior qualitative and quantitative results of our

proposed method w.r.t. state-of-the-art methods. In addition

to this, we also demonstrate the broader applicability of our

proposed HMD de-occlusion method with two real-world

use cases. First, we can use it to build hybrid VR systems

by integrating it with video-driven face animation solutions

such as [16], [19]. We also show how to integrate our method

with a 3D face reconstruction pipeline to generate 3D face

video for the VR teleconferencing system as a second use

case. To summarise, we make the following contributions:

1) We present a deep learning framework for person-

specic HMD de-occlusion. Our method does not rely

on high-end hardware (e.g., HMD with gaze tracking)

and calibrated data from the user (for avatar creation).

2) We introduced a novel attention module knitted with

the encoder-decoder architecture that can use back-

ground and appearance details from the input image

and allows the model to focus on inpainting the

occluded region with plausible details.

3) We collected a small dataset of multiple users in dif-

ferent appearances, facial expressions, and head-poses

that we intend to release to the academic community.

4) We present applications of our model where it can be

integrated with neural animation models such as [16],

[19] to animate an occluded video and can also be

used to recover 3D face from occluded input.

II. RELATED WORK

Our approach is an inpainting method that learns to ll

in user-specic details. It is related to traditional inpainting

methods and recent approaches that use a reference image

to ll an occluded region faithfully. In the following section,

we discuss the most relevant literature in detail.
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A. Person Specic Models

Recent deep-learning advances in vision and graphics

have led to the rise of personalized models that are ani-

mated/rendered using deep learning. The closest work to

ours is [5]. They use a video-to-video GAN [7], which

takes in egocentric frames of a person and generates the

corresponding frontal view. These methods show the ability

of person-specic models to capture high-frequency details.

[11] learns auto-encoder network to predict view conditioned

texture and mesh geometry from HMD occluded input. [6]

trains a dynamic neural radiance eld model on a short

video (2-3 min) of the person with different expressions and

poses. However, they require calibrated multi-view data from

the user, adding additional hardware constraints. Animating

these models is also expensive. Our approach requires a

short uncalibrated video from the user for training and is

considerably lightweight compared to avatar-based methods.

B. Image Inpainting Methods

Image inpainting describes the task of lling missing

image regions with realistic content. Recent works [20],

[21], [23] train a conditional GAN [8] on a face dataset as

a solution to this problem. These methods show impressive

generalization to examples with frontal head pose and ar-

bitrary occlusion. Another method, EdgeConnect [24] lls

the missing region using edges as prior. However, these

methods are biased to their training distribution as they do

not generalize well to even slightly non-frontal head poses

and suffer from a loss of identity. We train our method only

on images of the same person with considerable variations

in head poses and expressions that overcome the challenges

of identity loss and generalization to various head poses.

C. HMD Removal

Exemplar guided image inpainting methods such as

[13], [18] propose an image-based approach to HMD de-

occlusion. They use a reference image to guide the in-

painting procedure and learn a general model for the task.

However, [18] fails to work well with cases of signicant

pose variations between the reference and occluded im-

age. Also, [13] train and evaluate on synthetic data with

additional depth information, which may not work or be

available in a real-world teleconferencing scenario. We train

and evaluate our model on real-world conversations and

scenarios and show our model’s ability to generalize to

unseen appearances.

III. METHODOLOGY

A. Overview

The primary focus of our work is to learn a personalized

model for face de-occlusion, particularly as an application

in VR teleconferencing, where the face is partially occluded

due to HMD. To tackle this, we formulate the face de-

occlusion problem as an image inpainting task. Given an

occluded face image as an input Xocc, our network aims

to hallucinate the missing region with plausible and per-

ceptually consistent facial details in order to reconstruct the

generated unoccluded image, Xrec against the ground truth

unoccluded image, Xgt.

Inspired by the autoencoder architecture proposed in [3],

we use an novel attention enabled encoder-decoder frame-

work with generative capabilities that learns to reconstruct

high-delity unoccluded faces from HMD occluded input

images. Additionally, we also propose a novel mask-based

loss function and a novel training strategy to learn our model.

Figure 3 shows the outline of our proposed architecture.

B. Proposed Architecture

1) Encoder-Decoder Module: Our encoder-decoder mod-

ule comprises a stack of ResNet and inverted ResNet blocks.

Each ResNet block consists of a set of convolutions with

residual connections. For the inverted ResNet block, the rst

convolution in the ResNet block is replaced by a 4×4 deconv
layer. We also provide the additional generative capability

to the network using an adversarial loss. The encoder learns

a 256-dimensional feature representation of the input image.

This bottleneck representation is subsequently fed to the

decoder network to reconstruct the target image.

2) Attention Module: Inspired from existing literature on

attention-based learning strategies as proposed in [15], [10],

we append our encoder-decoder module with an attention

module. We perform spatial attention by taking the encoder

output from the second layer, Fenc of spatial dimension

64 × 64 and perform a channel-wise concatenation with

the corresponding decoder layer output Fdec of the same

spatial dimension. We feed it to our attention module,

which subsequently generates attention maps of the same

dimension as shown in Figure 3. We then decouple these

attention maps and use them for a weighted fusion of

respective feature maps (i.e., Fenc and Fdec). The fused

feature maps are fed downstream to convolution layers to

reconstruct the de-occluded face image.

Such attention-based spatial feature map fusion allows our

network to preserve high-frequency appearance/background

details (like hairs, wall texture, etc.) from the visible part

of the input image while generating a plausible facial

appearance for the occluded part. These attention maps can

be learned using fully convolutional networks. As shown

in Figure 3, the attention module consists of Conv(4m, 3),
Conv(4m, 3), Conv(8m, 3) and Conv(2m, 3), where m

denotes the base number of lters and Conv(m, k) denotes
a convolutional layer with output number of channels m and

kernel size k. The nal output with 2 ∗m channels is then

split into two, Attnenc and Attndec, each of m channels

and spatial dimension of 64 × 64. This acts as a attention

mask for the inputs, Frec and Fdec which is then fused again

using a channel-wise summation according to Equation 1.

Ffused = Fenc ∗Attnenc + Fdec ∗Attndec (1)
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Figure 3. An overview of our proposed facial de-occlusion network.

3) Loss Function: We employ a combination of four

different loss functions as our training objective. In order to

penalize reconstruction errors, we use pixel-based L1 loss.

Lrec = Xgt −Xrec1 (2)

However, using only L1 reconstruction loss produces blurry

outputs. To overcome this, we add a discriminator, D in the

architecture to compute the adversarial loss. This adversarial

loss term forces the encoder-decoder to reconstruct high-

delity outputs by sharpening the blurred images. For D, we

adopt the architecture of the DCGAN discriminator [14].

Ladv = log(D(Xgt)) + log(1−D(Xrec)) (3)

We also use SSIM based structural similarity loss, as dened

in [3], that helps to improve the alignment of high-frequency

image elements to stabilize the adversarial training.

Lssim = SSIM(Xrec, Xgt) (4)

To further improve the quality of reconstruction in the HMD

occluded area of the generated image, we propose a novel

mask-based loss. Here, we use the binary mask image as an

additional supervision to the network along with input image

while training. Minimizing this loss helps the model to

emphasize more on quality of reconstruction in the masked

region. This also helps to mitigate the blinking artifacts

around the eye region for stable reconstructions.

We formulate the mask-based loss function as:

Lmask = Imask  Igt − Imask  Irec1 (5)

where, Imask refers to single channel binary mask image

where white pixels (1) correspond to occluded region and

black pixels (0) correspond to the remaining unoccluded

region and  is element-wise multiplication. Thus, the nal

training objective loss function can be written as,

Lfinal =λrec ∗ Lrec + λadv ∗ Ladv + λssim ∗ Lssim

+ λmask ∗ Lmask

(6)

where, λrec,λadv,λssim and λmask are the corresponding

weight parameters for each loss term.

C. Our Training Strategy

For learning a person-specic model, we adopt a two-step

training process. We train the rst and second steps on the

person’s unoccluded and occluded face images, respectively.

In the rst step, we freeze the attention module and only train

the encoder-decoder to reconstruct the unoccluded images.

We start with unsupervised training of only encoder-decoder

on publicly available state-of-the-art face datasets such as

VGGFace [4] and AffectNet [12] to leverage the inherent

knowledge about the face structure. It enables the model

to grasp knowledge about the basic facial structure and

features such as eyes, nose, mouth, etc. Thus this step

is common for all users. We then perform netuning on

users’ images with a wide range of pose, expression, and

appearance variations. This step helps the model learn the

exact geometry of the user’s face. We unfreeze our attention

module in the second step and train the entire architecture

on occluded images. It can be considered a self-supervised

learning approach, where the input is an occluded image, and

the target image is its corresponding unoccluded image. We,

therefore, minimize the loss between the reconstructed face

image and the unoccluded ground truth image. It enables the

attention module to learn to retain the high-frequency details

from the visible part of the occluded input image while

performing a soft fusion with the generated image. Thus,

our two-step training strategy yields superior de-occlusion

with no explicit boundaries between occluded and visible

regions of the reconstructed image.

IV. EXPERIMENTS AND RESULTS

A. Dataset

Our method uses monocular RGB video sequences.

Hence, we captured various human subjects (around 20)

in different appearances at a 1280 × 720 pixels resolution

with a 30 FPS frame rate from a mobile phone camera.
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We collected 4-5 video sequences for each user, each of a

length of around 1-2 min, i.e., approximately 8k-9k frames

in total. Frames are cropped and scaled to 256× 256. We use

mutually exclusive sets of these video sequences from the

same subject in different appearances to train and evaluate

our user-specic model. The subjects were asked to engage

in a day-to-day conversation and demonstrate variations in

head poses.

It is important to note that this data is captured without

any occlusion to the eye region to create ground-truth

data for training and evaluation purposes. Thus, we add

a synthetic mask that simulates an HMD for each video

frame around the eye region. The placement of this binary

mask is guided by the facial landmarks and placed over

the eye region to occlude the face, which yields synthetic

mask data with ground-truth. During inference on real-world

HMD occlusions, we rst detect the HMD/smart-glass in

the input video frames and replace it with a binary mask

depicting the region that needs inpainting.

B. Implementation Details

For step one of training strategy (see Section III-C), we

train the encoder-decoder architecture on unoccluded images

with three loss functions (i.e., Equations 2, 3, 4) in a stage-

wise manner, with each loss term being added in the training

objective with every stage. We choose a batch size of 50

and an input resolution of 256 × 256. We train the network

for 300, 100, and 300 epochs, respectively, for each loss

function’s incremental addition. For step two, we similarly

train the encoder-decoder architecture with an additional

attention module with mask loss (Equation 5) on occluded

images for 300, 100, and 200 epochs, respectively, for each

of the incremental addition of loss functions. We use the

Adam optimizer [9] with a constant learning rate of 0.00002.

We use λrec = 1,λadv = 0.25,λssim = 60 and λmask = 1.

C. Evaluation Protocols

We choose SSIM (Structural Similarity Index Mea-

sure [25], PSNR (Peak Signal-to-Noise Ratio) [27] and

LPIPS (Learned Perceptual Image Patch Similarity) [26]

as our evaluation metrics for quantitative comparisons. For

SSIM and PSNR, higher the value better the reconstruction

quality, and for LPIPS, lower the value better the perceptual

quality.

D. Quantitative & Qualitative Results

For qualitative evaluation, we evaluate our method with

real occlusions, such as smart-glass, widely used in VR/AR

applications. We overlay the area surrounding the smart glass

with a synthetic mask generated (Section IV-A).

Figure 5 shows that our approach produces naturally-

looking de-occluded faces that are semantically consistent

with other frames in the sequence. In contrast, other state-

of-the-art image inpainting methods like DeepFillv2 [21],

Figure 4. Visual results on unseen appearance demonstrating the effect of
using attention and mask-loss. From left to right, third column shows results
of our method without attention and mask-loss, fourth column shows results
with only attention and fth column shows results with both attention and
mask-loss.

LaFIn [23], EdgeConnect [24], when ne-tuned on images

of the same user in different expressions, poses, and appear-

ances, generates poor reconstruction results. As shown in

the red box, these methods have a noticeable discrepancy be-

tween the left and right eyes. There are overlapping artifacts

around the eye region indicated by a blue box. The yellow

patch shows the inconsistency in skin color between the

hallucinated and the rest of the face. This visual comparison

strongly supports our idea of using a person-specic training

approach rather than the generalized method since they do

not guarantee to preserve identity and other high-frequency

details such as appearance, pose, and expressions across

frames. We also report de-occlusion results using our method

in varying expressions and head poses in Figure 6 to verify

the generalizability of the proposed model.

Table I reports the quantitative evaluation indicating the

benet of our approach for unseen appearances. It is im-

portant to note that we computed these quantitative results

on data with a synthetic HMD mask to have a ground-

truth to compare with. We can observe that our method

achieves superior results in terms of all evaluation metrics.

Though our method seems to perform only marginally

better than LaFIn and EgdeConnect in terms of SSIM and

LPIPS measures, there is a signicant difference in terms of

qualitative results. DeepFillv2 fails poorly in hallucinating

the missing region, thus reporting higher LPIPS and lower

Table I
QUANTITATIVE COMPARISON WITH OTHER METHODS ON FACE

RECONSTRUCTION.

Method SSIM↑ PSNR↑ LPIPS↓

LaFIn [23] 0.914 23.693 0.0601
EdgeConnect [24] 0.908 23.10 0.0689
DeepFillv2 [21] 0.845 19.693 0.117

Ours (w/o attention) 0.706 19.627 0.176
Ours 0.938 30.59 0.029
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Figure 5. Qualitative comparison with SOTA inpainting methods on real-world occlusion (smart-glass). Zoom in for better details.

SSIM, PSNR compared to our method.

E. Ablation Study

We also did an ablation study on the various loss functions

used in our method. We observed that training only with

Lrec generates a blurry image, whereas the addition of Ladv

introduces more sharpness. Finally, Lssim and Lmask make

it more consistent with facial features in the original image.

Table II reports quantitative evaluation indicating incremen-

tal importance of all loss functions in our formulation.

Figure 4 qualitatively shows the effect of adding attention

Table II
ABLATION STUDY ON DIFFERENT LOSS FUNCTIONS.

Method SSIM↑ PSNR↑ LPIPS↓

Ours (Lrec) 0.932 30.28 0.067
Ours (Lrec+Ladv) 0.916 29.37 0.042
Ours (Lrec+Ladv+Lssim) 0.936 30.37 0.031
Ours (Lrec+Ladv+Lssim+Lmask) 0.938 30.59 0.029

and mask-loss into the network. We use unseen test examples

with different appearances (not part of the training set).

Without attention, we can observe that the model cannot
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Figure 6. De-occlusion results using our method with large variations in head poses and expressions.

Table III
ABLATION STUDY ON DIFFERENT DIMENSIONALITY OF Z-VECTOR.

#Dims. SSIM↑ PSNR↑ LPIPS↓

99 0.918 29.025 0.042
256 0.938 30.59 0.029
512 0.935 29.12 0.031

capture the user’s appearance and background details as it

tries to hallucinate it from the training examples, whereas

introducing the attention into the network allows the model

to use the high-frequency information from the input image.

Furthermore, adding the mask loss introduces more consis-

tency in the hallucination of the masked region. As can be

observed in row 3 of Figure 4, introducing the mask allows

the eyes to be open as it is with the ground truth face image.

Table III reports an ablation study on the dimensionality of

z-vector. We achieved better results with d = 256.

V. APPLICATION TO HYBRID TELEPRESENCE SYSTEM

Recent works on face video animation, such as [16], [19],

demonstrate that by just using sparse landmarks, a face im-

age can be animated reasonably well from a reference image

and show its application in low-bandwidth environments. We

can easily integrate their method in our setup by rst de-

occluding the HMD followed by extracting reliable sparse

landmarks for facial animation as shown in Figure 7. Thus,

we can generate a consistent 2D video feed from the input

occluded video feed. Moreover, this animated face can also

be used for per-frame 3D face reconstruction tasks [22] and

fed to other VR teleconferencing users wearing a VR headset

(as shown in Figure 8). Hence, our method allows VR and

non-VR users to share a similar experience in a single hybrid

teleconferencing application.

VI. DISCUSSION

As shown earlier, our proposed approach promises to give

superior results, both qualitatively and quantitatively. We

also notice that if HMD occlusion is more than 70 percent

Figure 7. 2D de-occlusion using our method followed by the facial
animation using FOMM [16].

Figure 8. 3D reconstruction of de-occluded frame using DF2Net [22].

of the face, it becomes difcult for any existing methods to

reconstruct plausible faces for varying expressions and head

poses. Hence, these models can reconstruct canonical faces,

which might not always be the case in telepresence systems.

In the scope of this work, our model does not explicitly

handle eye movements since we are not providing any

strong priors such as landmarks. Thus, it might not be

able to capture accurate eyelid movement during blinks.

However, we can easily incorporate eye tracking and gaze

information for further rening our results. As future work,

we would like to focus on performing HMD de-occlusion by

leveraging temporal information across consecutive frames.

Using modern HMD devices, we can give extra supervision

about the eye information to the network to produce stable

reconstruction in the eye region that is consistent across

frames.
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VII. CONCLUSIONS

We proposed to learn a personalized model for

face de-occlusion, particularly as an application in VR

teleconferencing, where the face is partially occluded due

to HMD. We formulate the face de-occlusion problem

as an image inpainting task. Our proposed attention

enabled encoder-decoder network takes an HMD occluded

face as input and completes missing facial features,

particularly the eye region. The experiments show that

our method works reasonably well with the same person

wearing different clothes, facial appearances, poses, and

expressions. Experiments show that our proposed method

reports superior qualitative and quantitative results over

state-of-the-art methods.
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