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Figure 1: Reconstruction from in-the-wild images using PIFu [39], PaMIR [51], ICON [46] and SHARP [38] and ours. Our
method predicts high-fidelity geometry reconstruction along with a consistent appearance in face and loose clothing regions.

ABSTRACT
In this paper, we address the problem of monocular 3D human
reconstruction with an acute focus on the challenge of recover-
ing person-specific facial geometry as well as suppressing surface
noise, specifically addressing the issue of false geometrical varia-
tions caused by textural edges. Most of the existing state-of-the-art
methods in this domain fail to address these challenges. More specif-
ically, we propose to integrate facial and wrinkle map priors in a
learning-based framework to improve the quality of full-body 3D
reconstruction from monocular images. By incorporating facial
prior, we recover person-specific identity unlike many of the exist-
ing methods which rely on parametric shape models. Similarly, the
wrinkle map prior enables our network to alleviate the challenge
of false geometrical variations caused by high-frequency textural
details present in the input image. We evaluate our method on
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publicly available datasets & in-the-wild internet images with loose
clothing and report superior performance both qualitatively and
quantitatively when compared with SOTA methods.
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1 INTRODUCTION
The 3D modeling of humans is interesting and active area of re-
search in computer vision which has tremendous applications in
VR/AR, gaming, image, and video editing, tele-presence, virtual
try-on, to name a few. With the advent of deep learning, 3D human
body reconstruction from monocular RGB images [21, 38–40, 51]
is feasible eliminating the requirement of expensive multi-camera
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calibrated setups [33, 42]. However, the problem is ill-posed in
nature because of challenges which include self-occlusion, loose
clothing, skewed viewpoints, pose and shape variation, etc. The
two key challenges that are largely remain unaddressed by existing
literature are fidel reconstruction of high frequency geometrical
detail in the facial region as well as complex loose clothing covering
large parts of the body. High fidelity reconstruction of faces largely
enhances the realism and identity of the digitized human models.
However, it appears in a smaller area of the input image making
the reconstruction more difficult for existing methods. On the other
hand, although clothing covers significant portion of the human
body, it is difficult to model large space of garment designs, specifi-
cally in case of loose clothing where high frequency geometrical
details (owing to folds and curls) prevails in a highly unstructured
manner. More importantly, cloths also consist of high frequency
textural details, making it difficult to distinguish textural edges
with geometrical edges in a monocular reconstruction setup.

Existing monocular 3D human body reconstruction methods can
be broadly classified as parametric and non-parametric methods.
The first class of methods [21, 24, 32, 34] regress pose and shape
parameters of statistical model (SMPL) [28]. Nevertheless, they fail
to capture fine geometrical details as the reconstructed geometry
is bound within the parametric model space. Note that most of the
parametric templates are modeled as naked human body and hence
fail to deal with loose clothing scenario.

The other class of non-parametric methods [4, 31, 39, 44, 45]
are not constrained by the body prior and use non-parametric rep-
resentations to infer detailed geometry beyond basic body shape
and pose. Recently, deep implicit function learning [15, 39, 40]
techniques witnessed increased attention. These methods train
multi-layer perceptrons to estimate dense, continuous signed dis-
tance fields. from which 3D mesh is reconstructed via Marching
Cubes [29]. Another work, [19] proposed to represent the human
body by predicting multiple peeled depth maps. These methods fail
to ensure the prediction of physically plausible body shapes/poses
(like consistent geometry of arms) in the reconstructed mesh as
there are no global body shape/pose constraints. Some of the very
recent works [16, 17, 38, 51, 52] have addressed this problem by
incorporating a body prior i.e. SMPL into the reconstruction frame-
work. Nevertheless, these methods typically yield reconstruction
with facial geometrical details incorporated from the input SMPL
prior while the person-specific facial details are not retained. This
leads to loss of identity as well as misalignment in geometry and
appearance of facial features. There are few methods that specifi-
cally focus on accurate 3D face reconstruction [10, 12, 14, 27, 50]
but does not model the complete human body. Very recently, [8]
proposed to integrate facial features from 3DMM model [12] into
implicit function learning approaches. However, the method is not
able to perform better on the remaining parts of body as there is
no explicit body prior. Additionally, all these methods are prone to
interpret high frequency textural details present in the appearance
space of clothes as false geometrical edges/details thereby yielding
inconsistent and noisy geometrical reconstruction specifically in
the loose clothing. Although, disambiguate textural edges with ge-
ometrical edges is very hard problem but these methods entirely
neglect this challenge during reconstruction. Hence, there is an
acute need of framework which recover accurate and consistent

geometrical/appearance reconstruction of both face and complex
in-the-wild loose clothing while modelling 3D human body.

In this paper, we propose REF-SHARP, a novel 3D reconstruc-
tion framework for recovering people in loose clothing from a
monocular image while recovering fine 3D geometrical details of
the face. Additionally, we also attempt to alleviate false geometri-
cal edges caused by textural details in clothes. We improve upon
SHARP [38], a SOTA method which uses PeeledHuman represen-
tation [19] along with SMPL prior for the prediction of human in
loose clothing. However, similar to other methods Figure 1, SHARP
also yields low-quality facial geometry as well as false geometri-
cal details misled by textural edges. Thus, we propose to provide
high quality pixel-aligned depth prior for face region along with
prediction of wrinkle maps capturing geometrical edges to improve
upon the aforementioned limitations of SHARP. More specifically,
we attempt to recover finer facial details by predicting high res-
olution pixel-aligned depth in the face region and integrate this
with SMPL peeled depth prior. This ensures that person-specific
facial geometrical details will be preserved in the final reconstruc-
tion after learning-based fusion. Additionally, we propose to learn
and predict wrinkle map prior by regressing over geometrical edge
maps and concatenate this with face modified SMPL prior to and
use suppression and normal loss to ensure suppression of false
geometrical edges.

We evaluate our method on publicly available THUman2.0 [49]
and 3DHumans [38] datasets and report superior performance over
the SOTAmethods. To summarize our contributions are: we propose
REF-SHARP where we reconstruct high-fidelity geometrical details
in the face while recovering full body reconstruction under loose
clothing scenarios.

2 RELATEDWORK
2.1 Parametric Reconstruction Methods
With the emergence of statistical human models such as SMPL[28]
and SCAPE [3] interest has shifted to estimating these models
pose and shape from a single image using deep learning methods
[7, 11, 20, 21, 25, 32, 35]. [21, 34] tries to optimize the pose and
shape parameters of statistical human models for e.g.(SMPL) by
matching with image features obtained from CNN. The commonly
used features are 2D joints [7, 21, 32], 2D joints with silhouettes
[11, 25].

Methods proposed in [2, 5] deform the statistical models by
adding displacements over the surface to obtain geometric details
and clothing to a certain extent. It is to be noted that under this
SMPL[28] plus displacement setup only tight clothing can be mod-
eled as the loose garments such as skirts and robes have a surface
topology different from the body and are beyond the representa-
tion range. [53] models the fine geometric details as free-form 3D
deformations applied on the parametric body model. [23] improves
the estimation of the prediction by introducing model optimization
in the training loop, [30] combines local and global features to es-
timate fine body poses. Nevertheless parametric models can only
capture minimalistic clothing where the clothing is tight fitted with
the body and fails to represent humans with loose clothing.

[6, 36] use separate templates for body and garments and bind
garment vertices to the parametric body model which becomes
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difficult to represent very loose clothing as sarees, robes, and skirts
as the topology of the garment is constrained by the binding with
the body model.

2.2 Non-Parametric Reconstruction Methods
Volumetric regression based methods [44, 45] estimate the occu-
pancy of the voxels in the volumetric space using deep neural
networks. These methods are computationally costly for higher
resolution as voxel representation is memory intensive, high fre-
quency details are not captured due to lower resolution (typically
128). [39, 47] combines the pixel aligned 2D local features extracted
using deep convolutional networks with the implicit representation.
Nevertheless PIFu [39] suffers from feature ambiguity problem due
to multiple query points mapping to the same 2D image features
uponweak perspective projection and lacks global shape robustness.
PIFuHD [40] is another variation of PIFu which generates human
meshes from high resolution images. GeoPiFu [15] attempted to
resolve the feature ambiguity of 3d points projecting to the same
image feature by combining U-Net based volumetric features with
the pixel aligned features. However, this method is computation-
ally intensive during training and inference. An alternative set of
non-parametric approaches attempt to model 3D objects/scenes
as sparse layered representation. PeeledHuman [19] proposes a
sparse2D representation by posing the problem as an extension to
ray tracing, they model the 3D surface by performing ray intersec-
tion with the surface and storing them as the peeled depth and rgb
maps.

2.3 Prior based non-parametric Methods
DeepHuman [52] uses the SMPL as a prior to reconstruct the clothed
body volume and tries to further refine the surface details using
image features. However, their method fails to recover high-quality
geometric surface details owing to the resolution limitation of the
regular occupancy volume. ARCH [17] proposed a Semantic De-
formation Fields (SemDF) based approach where the query points
are sampled around the body in a canonical space (A-pose), an im-
plicit surface is learned in the canonical space, and deformed using
SemDF to match the pose in the input. However, it fails to gener-
ate accurate results, especially in the scenarios of loose clothing.
PaMIR [51] proposes to condition the implicit field on the SMPL
prior, they do this by combining the 2D image features with SMPL
volume features while querying. SHARP [38] proposes to model the
reconstruction as two tasks (1) deform the SMPL body prior peeled
maps in order to obtain fine-grained geometric surface details (2)
directly regress the loose clothing as auxiliary peeled depth maps
and combine both of them to obtain 3D reconstruction.

2.4 Face reconstruction methods
Similar to SMPL ([28]) for full body, 3D Morphable Models (3DMM)
[12] is proposed to model face in parametric representation. Meth-
ods proposed in [14, 27, 41, 43] estimate parameters of 3DMM. Im-
plicit functions are combined with 3D morphable models in [37, 48].
Full head models including hair are recovered in [9, 13, 26].

3 BACKGROUND
PEELED-HUMAN representation This is a sparse 2D represen-
tation of 3D objects modeled as Peeled Depth and RGB maps. The
3D Human mesh is placed in a virtual world and rays are passed
from the camera to intersect with the mesh. The primary set of rays
intersecting with the surface is captured as depth map 𝑑1 and RGB
map 𝑟1 depicting the visible surface details nearest to the camera.
The rays are then further extended beyond the first intersection
to hit the next intersecting surface. The corresponding depth and
RGB values of the 𝑖𝑡ℎ layer are represented by 𝑑𝑖 and 𝑟𝑖 , refer to
[19] for further understanding. [19] demonstrate that 4 layers are
sufficient to handle self-occlusions and common body poses though
the method can be extended to multiple layers.

4 METHOD
Our proposed REF-SHARP is divided into three key modules as
shown in Figure 2. The input monocular RGB image is fed to the
“Face Prior Module" where we predict pixel-aligned high resolution
depth map of the cropped face region and overlay it over SMPL
peeled prior. In parallel, we predict wrinkle map that models promi-
nent geometrical edges over the surface as outlined in “Wrinkle-map
Prior Module". The generated face+SMPL prior and wrinkle maps
along with input RGB image are then fed to the “Reconstruction &
Fusion Module" which reconstructs full body. This module predicts
auxiliary and residual depth peel maps, RGB peel maps for the full
body, and single layer face residual peel map. These maps are subse-
quently fused to get final peeledmaps that are jointly back-projected
to get high resolution vertex colored point cloud representing full
body. This dense surface point cloud is further converted to mesh
representation using Poisson surface reconstruction[22].

4.1 Face Prior Module
Similar to [38], we initially predict SMPL peeled prior 𝐷𝑖

𝑠𝑚𝑝𝑙
∈

𝐷𝑠𝑚𝑝𝑙 . We modify the SMPL peeled prior to obtain 𝐷∗
𝑠𝑚𝑝𝑙

by re-
placing the face region of SMPL (which has inconsistency in the
face) in the first layer (𝐷1

𝑠𝑚𝑝𝑙
) with face predicted from [50].

Since SMPL face is not exactly aligned to actual face, we use off-
the-shelf face estimation [50] to achieve pixel-to-pixel consistency
with the input image. We perform face detection using an off-the-
shelf method [1] to detect face in the image and crop it using
the detected bounding box𝑀𝑏 which contains the complete head
region (hair to chin). We rescale (bicubic interpolation) the cropped
region to 512x512 and mask the cropped image using 68 landmarks
detected using the face detection library [1] and feed it to [50] for
pixel-wise depth prediction. We rescale the depth prediction back
to the original resolution of the face in the image. It is important
to note that although we re-scale the face region, we are not using
any information from any external source. Finally, we replace the
SMPL face in first layer of SMPL prior (𝐷𝑠𝑚𝑝𝑙 ) with the rescaled
person-specific face prediction to obtain 𝐷∗

𝑠𝑚𝑝𝑙
.

However, [50] predicts depth in an orthogonal fashion, in order
to adopt this to the perspective setup and compensate for the de-
tails lost during the up-scaling we predict per pixel offsets for the
bounding box region(𝑀𝑏 ) of 𝐷∗1

𝑠𝑚𝑝𝑙
. In the next module, we use a
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Figure 2: Architecture of the proposed framework.

separate decoder branch for predicting these residual deformations
to focus on the region containing the face.

4.2 Wrinkle-map Prior Module
High frequency detail in the input RGB image can be from both
geometrical or textural variations. Our wrinkle map representation
aims to capture only the high frequency (edges) details that are
caused by variation in surface geometry, thereby decoupling these
details from textural high frequency details present in the appear-
ance space. However, such prediction can be done reliably only for
the first (and visible) peel layer as learning for other layers is hard
since the respective body surface is not observed in the input im-
age. We train an image-to-image translation GAN [18] to generate
wrinkle map from the input image using ground truth wrinkle map
as supervision. We use L1 loss over the predicted wrinkle map𝑤
and ground-truth wrinkle map �̂� along with the adversarial GAN
loss. The final loss function is:

𝑙𝑜𝑠𝑠 = 𝑤𝑔 ∗ 𝑙𝐺𝐴𝑁 +𝑤𝐿1 ∗ 𝑙𝐿1 (1)

where𝑤𝑔 and𝑤𝐿1 are the weighting factors for 𝑙𝐺𝐴𝑁 and 𝑙𝐿1

𝑙𝐺𝐴𝑁 = 𝐸𝐼𝑖𝑛𝑝 ,�̂� [𝑙𝑜𝑔𝐷 (𝐼𝑖𝑛𝑝 , �̂�)]
+ 𝐸𝐼𝑖𝑛𝑝 ,𝑤 [𝑙𝑜𝑔(1 − 𝐷 (𝐼𝑖𝑛𝑝 ,𝑤))] (2)

𝑙𝐿1 = |�̂� −𝑤 | . (3)

For generating ground truth wrinkle map �̂� we smooth the normal
map using a bilateral filter and then calculate the change in normal
using Laplacian filter and threshold it to obtain geometric regions
which are not smooth.

4.3 Reconstruction & Fusion Module
The generated wrinkle maps (�̂� ) along with 𝐷∗

𝑠𝑚𝑝𝑙
are fed as prior

to the encoder which predicts auxiliary peel maps �̂�𝑎𝑢𝑥 , RGB peel
maps �̂�𝑟𝑔𝑏 , residual peel maps �̂�𝑟𝑑 similar to [38]. We additionally
predict residual deformation for face �̂�𝑟𝑑_𝑓 . The predicted residual
deformation �̂�𝑟𝑑_𝑓 captures the face region and the hair region is
obtained from auxiliary peel maps �̂�𝑎𝑢𝑥 . Given the face bounding
box obtained from the face detector𝑀𝑏 (obtained in the previous
module), we estimate the complete face region peel map �̂� 𝑓 as a
fusion of �̂�𝑟𝑑_𝑓 , and �̂�1

𝑎𝑢𝑥 as follows:

�̂� 𝑓 = 𝑀𝑏 ∗ �̂�1
𝑎𝑢𝑥 +𝑀𝑏 ∗ (�̂�𝑟𝑑_𝑓 + 𝐷∗1

𝑠𝑚𝑝𝑙
). (4)

The residual deformation maps are added to 𝐷∗
𝑠𝑚𝑝𝑙

to get de-

formation maps �̂�𝑑𝑒𝑓 . We finally fuse all the peel maps to obtain
the final fused peel maps (�̂� 𝑓 𝑢𝑠 ). The final depth peel maps are
obtained by fusion of auxiliary (�̂�𝑎𝑢𝑥 ), face peel map (�̂� 𝑓 ), and
body peel map (�̂�𝑟𝑑 +𝐷∗

𝑠𝑚𝑝𝑙
). The first layer fused peel map (�̂�1

𝑓 𝑢𝑠
)

(which consists of face region) and remaining layer fuse peel maps
(�̂� 𝑓 𝑢𝑠 ) can be expressed as:

�̂�1
𝑓 𝑢𝑠

= 𝑀1
𝑠 (1 −𝑀𝑏 ) ∗ �̂�1

𝑑𝑒𝑓
+ (1 −𝑀1

𝑠 ) ∗ �̂�1
𝑎𝑢𝑥 + 𝐷 𝑓

�̂�𝑖
𝑓 𝑢𝑠

= 𝑀𝑖
𝑠 ∗ �̂�𝑖

𝑑𝑒 𝑓
+ (1 −𝑀𝑖

𝑠 ) ∗ �̂�𝑖
𝑎𝑢𝑥∀𝑖 ∈ 2, 3, 4

(5)

,where𝑀𝑠 is the mask for 𝑆𝑀𝑃𝐿∗ peeled prior defined as

𝑀𝑖
𝑠 =

{
1, if 𝐷∗𝑖

𝑠𝑚𝑝𝑙
> 0,

0, otherwise.
(6)

4.4 Loss Functions
We propose to use the following loss functions: face loss (𝑙𝑓 𝑎𝑐𝑒 ),
residual deformation loss (𝑙𝑟𝑑 ), RGB loss (𝑙𝑟𝑔𝑏 ) and fusion loss (𝑙𝑓 𝑢𝑠 ).
Additionally, we use smoothness loss (𝑙𝑠𝑚), normal loss (𝑙𝑛𝑙 ) for
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regularization. For normal loss, we back-project the predicted and
ground truth depth maps. The overall loss function used is :

𝐿 = 𝑤 𝑓 𝑢𝑠 ∗ 𝑙𝑓 𝑢𝑠 +𝑤𝑟𝑑 ∗ 𝑙𝑟𝑑 +𝑤𝑠𝑚 ∗ 𝑙𝑠𝑚 +𝑤𝑟𝑔𝑏 ∗ 𝑙𝑟𝑔𝑏
+𝑤𝑛 ∗ 𝑙𝑛𝑙 +𝑤𝑠𝑢𝑝 ∗ 𝑙𝑠𝑢𝑝 + 𝑙𝑓 𝑎𝑐𝑒 (7)

, where 𝑤 𝑓 𝑢𝑠 , 𝑤𝑟𝑑 , 𝑤𝑠𝑚 , 𝑤𝑟𝑔𝑏 , 𝑤𝑛 and 𝑤𝑠𝑢𝑝 are the respective
weights for 𝑙𝑓 𝑢𝑠 , 𝑙𝑟𝑑 ,𝑙𝑠𝑚 , 𝑙𝑟𝑔𝑏 , 𝑙𝑛𝑙 and 𝑙𝑠𝑢𝑝 .

The fusion (𝑙𝑓 𝑢𝑠 ), RGB (𝑙𝑟𝑔𝑏 ), residual deformation (𝑙𝑟𝑑 ) and
smoothness (𝑙𝑠𝑚) losses are similar to [38], i.e. 𝐿1 loss between
respective ground truth and predicted peel maps. The remaining
loss terms are defined as follows:

𝑙𝑓 𝑎𝑐𝑒 = 𝑤 𝑓 ∗
���𝑀𝑏 ∗ 𝐷1

𝑓 𝑢𝑠
− �̂� 𝑓

���+
𝑤 𝑓 _𝑟𝑑 ∗

���̂�𝑟𝑑_𝑓 − 𝐷𝑟𝑑_𝑓
��+

𝑤 𝑓 _𝑛 ∗
���̂�𝑓 − 𝑁𝑓

�� . (8)

We employ 𝐿1 loss over the �̂� 𝑓 and the ground truth depth in
the face region. We calculate 𝐿1 loss between ground truth residual
depth 𝐷𝑟𝑑_𝑓 and predicted �̂�𝑟𝑑_𝑓 . We use 𝐿1 loss over ground truth
and predicted normals 𝑁𝑓 and �̂�𝑓 respectively.

In order to compensate for the over smoothing we apply the L1
loss between normal maps of predicted and ground truth depth of
the first fused layer. Let 𝑁 be the normals obtained from 𝐷1

𝑓 𝑢𝑠
and

�̂� be the normals obtained from �̂�1
𝑓 𝑢𝑠

then the loss is defined as
below.

𝑙𝑛𝑙 =
���̂� − 𝑁

�� . (9)
Based on the wrinkle map we penalise the change in gradients of

the depth of non-wrinkle regions as regularisation term to ensure
that empty regions in the wrinkle map are locally smooth.

𝑀𝑤 =

{
1, if �̂� > 0
0, otherwise.

(10)

𝑙𝑠𝑢𝑝 =

���(1 −𝑀𝑤)∇�̂�1
𝑓 𝑢𝑠

��� . (11)

We back-project the D̂𝑓 𝑢𝑠 and 𝑅 to camera co-ordinate frame as-
suming the projection is weak perspective in order to obtain the
3D point cloud of the reconstruction. The point-cloud is then post-
processed, and further meshified using Poisson Surface Reconstruc-
tion (PSR)[22] to generate the final 3D body mesh.

5 EXPERIMENTS AND RESULTS
5.1 Datasets
3DHumans [38]: The dataset is a collection of 200 subjects with
diverse body shapes and various clothing styles. This dataset con-
sists of relatively loose clothing (South Asian styles), and also tight
clothing such as shirts and pants. The dataset consists of around 150
male and 50 unique female subjects with a database of 200 scans.

THuman2.0 [49]: The dataset is a collection of 500 subjects
with high quality 3D scans captured with a DSLR rig. Each subject
has around 3-4 poses hence providing us with various poses in the
dataset. However, the dataset lacks very loose clothing like long
skirts etc.

5.2 Implementation Details
For wrinkle map generation we employ a GAN [18] with our gen-
erator being a ResNet generator with a set of down convolution
blocks followed by 18 residual blocks then a set of up convolution
blocks and our discriminator is a patch-based discriminator. The
peeled depth estimation network is an encoder-decoder network.
The input to the network is a concatenation of RGB image, SMPL
peeled prior and generated wrinkle map. The shared encoder con-
sists of an initial convolution layer of 64 filters of size 7×7 followed
by a couple of down sampling layers of filter size 3 × 3 with stride
2 and respective filters of 128 and 256, in each layer. The down
sampled output of 256× 128× 128 is then passed through a series of
(18) residual blocks. The encoded shared features are then passed
to the decoders which predict different outcomes based on the task.
The decoders 𝐷𝑎𝑢𝑥 , 𝐷𝑟𝑑 ,𝐷𝑟𝑔𝑏 and 𝐷𝑟𝑑𝑓

, consists of 2 upsampling
layers of filter sizes 3 × 3 and channels 128 and 64, respectively.
This is followed by a convolutional layer of filter size 7 × 7. Sig-
moid activation is used in 𝐷𝑎𝑢𝑥 ,𝐷𝑟𝑑 and𝐷𝑟𝑑_𝑓 decoder branches,
whereas a Tanh activation is used for the 𝐷𝑟𝑔𝑏 decoder branch. The
𝐷𝑟𝑑 output values are scaled to a range of [- 1, 0.5] and 𝐷𝑟𝑑_𝑓 to
[-0.025,0.025] which can be found empirically.

We use Adam optimiser with an initial learning rate of 0.0005.
Our network takes around 30 hrs to train for 30 epochs on 4 Nvidia
GTX 1080Ti GPUs with a batch size of 4 and𝑤 𝑓 𝑢𝑠 ,𝑤𝑟𝑑 ,𝑤𝑠𝑚 ,𝑤𝑟𝑔𝑏 ,
𝑤𝑛 and𝑤𝑠𝑢𝑝 are set to 1, 1, 0.1, 0.001, 0.2𝑎𝑛𝑑0.001 respectively.

5.3 Qualitative & Quantitative Evaluation
We evaluate our model by comparing it with following SOTA meth-
ods: PIFu[39], PaMIR[51], ICON[46] and SHARP[38].
Qualitative Results:We present detailed qualitative results gen-
erated by our method and comparisons.First, Figure 3 we refer to
the results generated by our method on the subjects from 3DHu-
mans and THUman2.0 in Figure 3. Here, the first two columns are
on 3DHumans dataset and last two columns are on THUman2.0
dataset. It can be observed that our model can deal with various
styles of clothing while predicting high geometric details in the
face. Next, we also test the generalization of our model on unseen
internet images and report them in Figure 4. It can be observed
that our wrinkle map enhances the results qualitatively. It is also
observed that our method produces highly detailed faces which can
be observed in the third column of Figure 4.

Finally, we qualitatively compare the aforementioned SOTA
methods in Figure 5, Figure 1. For each input image, we show
full body reconstruction along with face geometry and texture. Ac-
curate face prediction enhances the quality of reconstruction after
back projecting the texture. It is observed that in all the SOTAmeth-
ods, when the texture is back-projected, misalignment is clearly
visible. Our method reconstructs face to actual geometry thereby
preserving back-projected texture and enhancing the realism.
Quantitative Results: We also evaluate our model quantitatively
by comparing it with the aforementioned SOTAmethods. In Table 1,
we show quantitative results on head region where we trained the
models on both 3DHUmans and THUman2 .0 datasets using the
same train and test split. We use Chamfer distance (lower the better)
and point to surface distance (P2S)(lower the better) as evaluation
metrics. We can infer that our method consistently outperform all
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3DHumans [38] THUman2.0 [49]
Method Chamfer(∗10−5) P2S Chamfer(∗10−5) P2S
PIFu 13.9 0.0071 18.1 0.0074
PaMIR 5.9 0.0068 3.6 0.0033
ICON 4.1 0.0045 3.1 0.0039
SHARP 3.1 0.0033 2.7 0.0031
OURS 2.5 0.0028 2.4 0.0027

Table 1: Performance of our method in head-only region.

Figure 3: Qualitative results of our method on 3DHumans (columns 1 and 2) and THuman2 (columns 3 and 4) datasets. Top row:
input image, 2nd and 4th rows: full-body and head region reconstruction of our method, 3rd and 5th rows: ground truth full
body and head only region scans.

the SOTA methods. Our framework which integrates face prior reconstructs accurate facial geometry close to ground truth face
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Figure 4: Qualitative results of our method on in-the-wild internet images.

PIFu PaMIR ICON SHARP OURS

Figure 5: Qualitative comparison on 3DHumans (top row), THuman 2.0 (middle row) and in-the-wild (bottom row) images.

while achieving consistent fusion with face and head region. We
also perform quantitative evaluation of full body region in Table 2.
In full body reconstruction we are close to SHARP. Nevertheless,
we can observe in Figure 1, Figure 4, and Figure 5 (bottom row) our
method yield qualitatively far superior results, while generalizing
to in-the-wild internet images.

5.4 Ablation
Our model predicts accurate geometry compared to directly over-
laying the face prior with the body, as shown in Figure 6. It is to
be noted that directly overlaying face prior produces artifacts in
the head region. Our proposed residual deformation on the face
(𝐷𝑟𝑑𝑓

) seamlessly fuse the face prior with the head region ( e.g.,
near front hairline), as illustrated. In Table 3, we provide a study on
the impact of suppression loss (𝑙𝑠𝑢𝑝 ) and normal loss (𝑙𝑛𝑙 ) on the
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3DHumans [38] THUman2.0 [49]
Method P2S P2S
PIFu 0.00826 0.0091
ICON 0.00822 0.0064
PaMIR 0.00714 0.0049
SHARP 0.00514 0.0055
OURS 0.00508 0.00546

Table 2: Performance of our method in full body region.

(a) (b)

Figure 6: Effect of our networks refinement over face. (a)
Directly overlaying fae prior; (b) Our fused reconstruction.

loss terms P2S
𝑤/𝑜 𝑙𝑠𝑢𝑝 &𝑤/𝑜 𝑙𝑛𝑙 0.0055
𝑤 𝑙𝑠𝑢𝑝 &𝑤/𝑜 𝑙𝑛𝑙 0.0054
𝑤/𝑜 𝑙𝑠𝑢𝑝 &𝑤 𝑙𝑛𝑙 00518
𝑤 𝑙𝑠𝑢𝑝 &𝑤 𝑙𝑛𝑙 0.00508

Table 3: Ablation study of 𝑙𝑛𝑙 and 𝑙𝑠𝑢𝑝 .

model’s performance. We show P2S estimation on full body (which
includes face) on 3DHumans [38] dataset. We observe when we
train our model without 𝑙𝑠𝑢𝑝 and 𝑙𝑛𝑙 losses, we obtain inferior P2S
values. Subsequently, we add the suppression loss (𝑙𝑠𝑢𝑝 ) and get
slightly improved performance over the previous setup. Further,
only adding normal loss (𝑙𝑛𝑙 ) also significantly boosts the perfor-
mance where we achieve P2S value of 0.00518. Finally, when trained
the model by using both normal and suppression loss to achieve
further improvement in P2S, i.e, 0.00508. Hence, the proposed losses
contribute to improved performance of our framework. Addition-
ally, we quantitatively evaluate the performance of our method by
removing the wrinkle map prior in Table 4. As we can observe, the
performance deteriorates in absence of this prior. Finally, we also
perform ablative study on the face prior in Table 5 where we can in-
fer that both the P2S error as well as Chamfer distance around head
region increases in absence of face prior. We also show qualitatively
that there is significant misalignment between the predicted geom-
etry and texture of the face while using SMPL face as prior in our
framework whereas our proposed method with pixel-aligned depth
face prior achieve much superior texture to geometry alignment as
shown in Figure 7.

P2S
Without wrinkle map prior 0.00517
With wrinkle map prior 0.00508

Table 4: Effect of wrinkle map prior.

Prior Chamfer(∗10−5) P2S
𝑤/𝑜 face prior 2.8 0.0031
𝑤 face prior 2.5 0.0028

Table 5: Ablation study of facial prior on head region.

Image (a) (b)

Figure 7: Qualitative ablative analysis of facial prior on inter-
net images. (a) with SMPL face prior (b) with our face prior.

Figure 8: Limitation of our method.

5.5 Limitations
Majority of existing pixel-aligned face depth prediction methods
predicts only the frontal faces reliably. Thus, our method can’t
recover good geometrical reconstruction where the face has skewed
pose with large portion of face self-occluded. In this scenario, our
proposed model predicts a smooth face in the occluded region as
illustrated in the Figure 8. This can be resolved partially if we use a
full head parametric model which provides prior for the occluded
regions of the face. Nevertheless, full head models also suffers from
recovering accurate person-specific face in extreme self-occlusion
cases. Alternatively, we can also model the occluded regions in a
generative fashion to recover hidden region which can be explored
as part of the future work.

It is important to note that in monocular reconstruction setup
(with fixed illumination), it is an ill-posed problem to absolutely
discriminate between geometrical and textural edges. Hence, our
proposed wrinkle map formulation is also susceptible to failure
as it is largely dependent on training data distribution. Thus, it
will be interesting to explore a solution in the multi-view (varying



REF-SHARP: REFined face and geometry reconstruction of people in loose clothing ICVGIP’22, December 8–10, 2022, Gandhinagar, India

illumination) or temporal learning setup where it can be easy to
differentiate between these geometrical and textural edges.

6 CONCLUSION
Predicting accurate 3D face and body largely enhances the realism
of 3D human body models. In this paper, we proposed a novel
reconstruction framework where we incorporate facial prior and
wrinkle map prior to recover detailed geometry of face and body
in people wearing loose clothing. We demonstrated results on in-
the-wild settings by training our model with publicly available
datasets.
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